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Abstract

Marginal likelihood is a key quantity in Bayesian statistical mod-

eling where it is used as a normalizing constant in a posterior distri-

bution of model's parameters. More generally, it is used to evaluate

model's uncertainty given data, a characteristic which is used for model

selection - selecting best model out of several possible candidate mod-

els, and model averaging - aggregating predictions given by several

di�erent models. However, direct calculation of marginal likelihood

involves marginalization over the whole parameter space, which can

be prohibitively expensive to compute, so various approximations are

used, many of which use Markov chain Monte Carlo (MCMC) sim-

ulations. MCMC simulations are widely used in Bayesian statistical

modeling because they allow e�cient estimation of model parameters

and their con�dences by sampling from a posterior distribution, even

for high-dimensional models. They are also used in approximating the

marginal likelihood, and this seminar reviews some of the commonly

used methods.
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1 Introduction

Why would we even be interested in computing the marginal likelihood1?
In general, a goal of statistical inference is to �nd a posterior probability of
parameters θ given a particular modelMk and data D [4, 5]. This is given
by Bayes theorem:

p(θ|D,Mk) =
p(D|θ,Mk)p(θ|Mk)

p(D|Mk)
=

p(D|θ,Mk)p(θ|Mk)∫
p(D|θ,Mk)p(θ|Mk)dθ

(1)

Here, marginal likelihood p(D|Mk) appears in denominator and serves as
a normalizing constant. It can be expressed as a marginalization of likelihood
over all possible parameter values. As such it is not needed for parameter
inference because it does not depend on the parameters themselves. However,
there are two important use cases for which marginal likelihood is crucial.
First of these is model selection - choosing between two or more competing
models by evaluating their �t to data [6, 7]. A quantity which measures this
is a posterior probability of a model Mk given the data D, which we can
again express using the Bayes theorem:

p(Mk|D) =
p(D|Mk)p(Mk)

p(D)
=

p(D|Mk)p(Mk)∑
Mi∈{Mk} p(D|Mi)p(Mi)

(2)

Here, p(D) is marginalization of data over all possible models {Mk}2, so
we can simplify our posterior:

p(Mk|D) ∝ p(D|Mk)p(Mk) (3)

We can compare the �t of two models by the ratio of their posterior
probabilities, which can be separated into ratios of prior probabilities and
ratios of marginal likelihoods, also called Bayes factor [8]:

p(Mi|D)
p(Mj|D)︸ ︷︷ ︸
posterior odds

=
p(D|Mi)

p(D|Mj)︸ ︷︷ ︸
Bayes factor

p(Mi)

p(Mj)︸ ︷︷ ︸
prior odds

(4)

1Other commonly used names are integrated likelihood [1], model evidence [2] and nor-

malizing constant [3].
2This is a discrete marginalization because it involves a �nite number of speci�c mod-

els. In contrasts, marginalization over the parameter space (equation 1) is a continuous
marginalization.
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Quantitative interpretation, in terms of the strength of evidence of model
Mi over modelMj, is usually the following [9, 8]: from 0 to 0.5 not worth a
mention, from 0.5 to 1 substantial evidence, from 1 to 2 strong evidence and
over 2 a decisive evidence in favor of modelMi.

Second use case is model averaging - averaging predictions made by mul-
tiple models, weighted proportional to their posterior model probabilities, in
that way incorporating model uncertainty into the prediction [10]. Posterior
probability of future observations D∗ given current observations D is the av-
erage over posterior predictive distributions given each model p(D∗|Mk,D)
weighted by their respective posterior model probabilities p(Mk|D):

p(D∗|D) =
l∑

k=1

p(D∗|Mk,D)p(Mk|D) (5)

Again, in order to obtain posterior model probability p(Mk|D) we have to
calculate marginal likelihood p(Mk|D), as the two quantities are proportional
(equation 3).

So we established that marginal likelihood is important and that it is
worthwhile to compute it. Question remains - how actually to compute it?
As I will show in the next section, direct calculation is usually infeasible
but, luckily, there are many methods for approximating it su�ciently well
for practical applications.

2 Approximations to marginal likelihood

Marginal likelihood p(D|Mk) is computationally demanding to compute be-
cause it requires marginalization of data D over the whole parameter space
θ:

p(D|Mk) =
∫
p(D|θ,Mk)p(θ|Mk)dθ (6)

In some speci�c cases, such as when using conjugate priors, it is possible
to express marginal likelihood in closed form. In other cases, it is possible
to derive approximate analytical estimations or to use numerical integration
which, however, becomes infeasible for high-dimensional models. However,
it is possible to use Markov chain Monte Carlo (MCMC) methods to sample
directly from the posterior distribution, and to use these samples for estima-
tion of the parameters of a model [11, 12, 13]. These samples can also be used
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for estimation of marginal likelihood. Methods where marginal likelihood is
estimated for each model separately are referred to as within-model methods

[2]. I will review several of them in the next subsections - direct estimate
via mean or a harmonic mean of the likelihood values, and Chib's method
[14, 15]. Other within-model methods include annealed importance sampling
[16] and power posterior method [17]. Another category of methods, which
I will not cover in this seminar, are between-model methods where multiple
models are combined into a single MCMC simulation. One example of these
is reversible jump (trans-dimensional) MCMC [18].

2.1 Direct estimates of marginal likelihood

The most direct estimate of marginal likelihood using MCMC traces can be
achieved in two ways [18]: (1) sampling from the posterior and taking the
harmonic mean of the likelihood values, which is called a harmonic mean

estimator [19]:

p̂1(D|Mk) =

(
1

N

N∑
t=1

{p(D|Mk, θ
(t)
k )}−1

)−1
(7)

where θ
(1)
k , θ

(2)
k . . . is a MCMC sample from the posterior p(θk|D,Mk),

and (2) sampling from the prior and taking a mean of the likelihood values:

p̂2(D|Mk) =
1

N

N∑
t=1

p(D|Mk, θ
(t)
k ) (8)

where p(θk|Mk) is a sample from the prior. These estimates are unbiased
and simulation-consistent. For example, it is easy to see that the harmonic
mean estimate is the expectation of the likelihood with respect to the poste-
rior distribution [19, 20, 4]:

E

[
1

p(D|θ)
|D
]
=
∫ 1

p(D|θ)
p(θ|D)dθ =

∫ 1

p(D|θ)
p(D|θ)p(θ)
p(D)

dθ

=
1

p(D)

∫
p(θ)dθ =

1

p(D)
≈ p̂1(D|Mk)

(9)

However, these estimates do not have �nite variance in general and as
such are often unstable, requiring large number of samples to converge to
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a meaningful value [1, 20]. This is because, in general, neither p̂1(D|Mk)
nor p̂2(D|Mk) satisfy a Gaussian central limit theorem [19]. In the case
of p̂1(D|Mk), p(D|θ)−1 is in general not square integrable with respect to
the posterior distribution, and so there may be a value θ(r) with very small
likelihood which produces large e�ect on the �nal result. On the other hand,
in the case of p̂2(D|Mk), most of the θ(r) will have small likelihoods and
convergence will be quite slow, but, in the same time, dominated by few
large values of likelihood, increasing the variance of the estimator. Another
interpretation (see [4], p. 872, as well as [10, 21]) is that marginal likelihood
is sensitive both to the prior and the posterior, while in estimates 7 and 8
we are sampling from just one of them.

One way of increasing the stability is to somehow combine the two es-
timates. For example, Newton and Raftery [19] propose simulating from a
mixture of prior and posterior p̃(θk;D,Mk) = δp(θk) + (1 − δ)p(θk;D,Mk)
to stabilize the estimate:

p̂3(D|Mk) =

∑N
t=1 p(D|Mk, θ

(t)
k )w(θ

(t)
k )∑N

t=1w(θ
(t)
k )

(10)

where w(θk) = p(θk|Mk)/p̃(θk;D,Mk). Equations 7, 8, and their com-
bination 10 could all be derived from a more general importance sampling

estimate of integrals of the form I =
∫
g(θ)p(θ)dθ [19]:

Î =
m∑
i=1

wig(θ
(i))/

m∑
i=1

wi (11)

where we take g(θ) = p(x|θ). Also, weights wi = p(θ(i))/p∗(θ(i)) with
p∗(θ) being the importance sampling function. In the case of harmonic mean
estimate (equation 7) the importance sampling function is the posterior dis-
tribution p∗(θ) = p(θ|x) while in the case of normal estimate (equation 8) it
is the prior distribution p∗(θ) = p(θ).

2.2 Chib's method

Chib's method (also known as the candidate method) [14] follows from re-
arranging of the Bayes theorem for parameter inference (equation 1):

p(D|Mk) =
p(D|θ,Mk)p(θ|Mk)

p(θ|D,Mk)
(12)
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For brevity, we will temporarily drop a conditioning on the model Mk

from the equations. The logarithmic version of the equation above is:

log(p(D)) = log(p(D|θ∗)) + log(p(θ∗))− log(p̂(θ∗|D)) (13)

Where p̂(θ∗|D) is an estimate of posterior density at the parameter θ∗. In
theory, the expression is valid for any value of θ∗, but in practice a parameter
of high posterior probability (mode, mean or median) is used in order to max-
imize the accuracy of approximation [10, 6]. Usually, both likelihood p(D|θ∗)
and prior p(θ∗) terms can be evaluated in closed form. In contrast, posterior
p̂(θ∗|D) usually has to be estimated from a MCMC simulation. In the case
of Gibbs sampler this can be done by �rst partitioning parameter space into
blocks for which full conditional distributions are available in closed form.
In the case of two blocks θ = (θ1, θ2) where full conditional probabilities are
p(θ1|D, θ2) and p(θ2|D, θ1) we can estimate p̂(θ2|D) with ([6], page 175):

p̂(θ2|D) =
1

L

L∑
j=1

p(θ2|D, θ(j)1 ) (14)

Where θj1; j = 1, . . . , L is a set of posterior samples. The joint posterior
p̂(θ∗|D) can now be calculated as:

p(θ|D) = p(θ1|D, θ2)p(θ2|D) (15)

And the estimator of marginal likelihood can now be written as:

log(p(D)) ≈ log(p(D|θ∗1, θ∗2))+ log(p(θ∗1, θ
∗
2))− log(p(θ∗1|D, θ∗2))− log(p̂(θ∗2|D))

(16)
This expression generalizes to cases with any number of blocks. In general,

for B blocks we have:

log(p(D)) ≈ log(p(D|θ∗) + log(p(θ∗))−
B∑

k=1

log(p̂(θ∗k|D, θ∗k+1, . . . , θ
∗
B)) (17)

Chib's method was originally developed only for outputs from Gibbs sam-
pler, where conditional probabilities of each parameter considering all others
are readily available, but was later also extended to accommodate outputs
from a Metropolis-Hastings samplers [15]. An assumption of Chib's method
which is often violated in practice is that all modes of a posterior should be
su�ciently sampled [4].
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3 Conclusion

In this seminar I reviewed several methods for approximation of marginal
likelihood using MCMC simulations. Marginal likelihood is a crucial quan-
tity in Bayesian statistical modeling needed to asses model uncertainty, which
is used in model selection and as well as prediction through the use of model
averaging. Using MCMC and similar sampling methods in this context is
crucial for high-dimensional models for which direct marginalization of the
whole parameter space needed for calculation of marginal likelihood is un-
feasible. The most direct ways of approximating marginal likelihood from a
MCMC simulation is through the mean and arithmetic mean of the likelihood
values obtained from a simulation. These estimators, although simple and
straightforward to implement, are nonetheless practically useless as they do
not have �nite variance, making estimates extremely unstable and requiring
large number of samples for estimation. A slightly more advanced method,
Chib's candidate method, does not su�er from these pitfalls, although it does
depend on several assumptions which are usually hard to satisfy in practice.
There are many more methods developed in recent years which were not
covered in this seminar, or were only mentioned in passing.
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