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Abstract

In this seminar I will present some of the key conceptual and practi-

cal di�erences between frequentist and Bayesian approaches to statistical

inference. I will start with a short introductory example of estimating

success rate of clinical trials, and continue with parameter inference in

the case of linear regression with polynomials. In the end, I will explain

the problem of model selection and how it di�ers in the two approaches.

1 Introduction

The goal of data modeling is to infer joint probability distribution P (θ|M,D)
for our two random variables - data D and parameters θ, under the assumption
of a model M [1, 2]. Let us assume for now that our model M is given so
that we can temporarily drop the dependence on it in the expression above.
In general, we can consider multiple competing models Mi and evaluate their
�t to the data through the process of model selection (section 4). We can
express this joint probability in two mathematically equivalent ways, either
through conditional probability of data P (D|θ)P (θ) or conditional probability
of parameters P (θ|D)P (D). From this we can derive the Bayes theorem:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(1)

• p(θ|D) posterior probability

• p(D|θ) likelihood which gives us probability of data given parameters.

• p(θ) prior probability of parameters before we observe any data.

• p(D) model evidence or marginal likelihood which servers as a nor-
malizing constant and because it does not depend on the parameters θ it
can be ignored in parameter inference.
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In principle, Bayes theorem gives as a probabilistically principled way of
performing inference on the unknown parameter values θ given observed data
D. One of the oldest known usages is by Pierre-Simon Laplace, who improved
on Bayes's work and applied the theorem on wide range of problems [3]. How-
ever, there are two di�culties in using the Bayes theorem directly for statis-
tical inference. First of these is technical, as calculation of a full posterior
probability distribution through the Bayes theorem requires a manipulation of
high-dimensional integrals. Only for a certain choice of prior and likelihood dis-
tributions there is a guarantee that we will obtain a closed form solution. Such
is the case, for example, with distributions which are conjugate to one another.
In general, there is no guarantee that closed form solution even exists, and we
have to resort either to direct numerical integration, or to sampling methods
such as Markov Chain Monte Carlo (MCMC) [2]. This technical di�culty was
alleviated in part by the development of more powerful computational methods
in recent decades, and, more earlier, by the development of e�cient inference
methods which infer point estimates rather than the full posterior distribution.
These point estimates somehow characterize a best solution to the inference, and
under certain choice of prior and likelihood distributions there is a guarantee
that they have certain bene�cial properties - for example, that they correspond
to a mode or an average of a posterior distribution.

The other di�culty is a conceptual one, as we have to express parameters of
our model as probability distributions. The most controversial part of this is the
speci�cation of prior - a probability distribution for our parameters before we
observed any data at all! In practice, this can actually aid us in our inference, as
it allows us to encode prior knowledge into our inference. If priors are reasonable,
this will actually make our inference more e�cient, as we will need less data
to make good inferences because priors already provide part of an explanation.
With enough data, any reasonable prior, meaning any prior which assigns a
non zero probability to the true parameter values, will be overwhelmed by the
weight of data. The downside is that inappropriate priors will introduce bias
into our inference. We can try to avoid this by choosing an uninformative prior
- a prior which encodes as little information as possible about our parameter
(for example, a �at or uniform prior), although this is sometimes impossible and
it can have a negative impact on the e�ciency of inference [4].

We can now �nally highlight some of the main di�erences between frequentist
and Bayesian approaches to inference. If we use the full power of Bayes theorem
for inference, including specifying prior distributions for the parameters and
obtaining a full posterior distribution for our parameters of interest, we are
following a Bayesian approach to inference [2, 5]. If we are uncomfortable with
the concept of priors and are happy with point estimates for our parameters, we
can base our inference solely on the likelihood p(D|θ) part of the Bayes theorem.
For inference we can use a likelihood function L(D; θ), which is proportional to
the likelihood but itself is not a probability distribution - for example, it does not
necessarily integrate to unity! We can optimize likelihood function with e�cient
numerical optimization methods, giving us a point estimate for our parameters.
In that case we are following a frequentist approach to inference. The origin of
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the word frequentist is in the fact that, through likelihood, we implicitly consider
all possible datasets that could have occurred with this particular combination
of model and its parameter values - our dataset is a random variable! However,
as we have only one realization of this particular dataset, we can calculate an
exact probability of observing this particular dataset under the assumption of a
�xed model and its parameters. This allow us to perform a hypothesis testing
procedure - we can de�ne a suitable null model which states that there is no
e�ect at all, and then calculate the probability of observing a dataset that is as
extreme as this one - a p-value. If this probability is lower then some prespeci�ed
threshold, we can reject the null hypothesis.

So Bayes theorem, being one of the fundamental theorems of probability
theory, holds universally regardless whether we choose to follow frequentist or
Bayesian approach. The di�erence is in the interpretation of probability it-
self. Bayesian approach interprets probabilities as degrees of belief, or knowl-
edge, about unknown parameters considering �xed data. So it is conceptually
straightforward in Bayesian approach to express parameters as random vari-
ables, and to use full power of Bayesian theorem for inference. On the other
hand, frequentist approach interprets probabilities as frequencies of real or hy-
pothetical events which are underlaid by a �xed, although unknown, model and
its parameters. In practice, Bayesian analysis involves computation of a full
posterior distribution for the parameters of interest, often through numerical
integration or a sampling method like Markov Chain Monte Carlo. Frequentist
analysis involves calculation of point estimates for the parameters through the
likelihood function, often using numerical optimization for �nding maximum
likelihood solution, and hypothesis testing.

2 Introduction example: Clinical trials

The following example is inspired by discussion on Bayesian clinical trials from
[6, 7], and it will serve us to introduce some key di�erences between frequentist
and Bayesian approach to statistical inference. Clinical trial can be modeled
as a consecutive execution of a measurement with two possible outcomes - suc-
cess and failure (of treatment for example). The goal of the analysis is to use
information on the observed outcomes and infer the probability of success in
general.

Bayesian approach

Bayesian try to model the probability of parameter of interest directly. In this
case the most appropriate model is the beta distribution which is parameterized
with two parameters α and β, with α, β > 0. The probability density function
is given by:

p(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1 =

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (2)
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Figure 1: Beta distribution for di�erent values of α and β (left). Binomial
distribution for di�erent parameters p and n (right).

Where beta function B(α, β) and gamma function Γ(α) serve as normal-
ization constants so that probability integrates to 1. Left panel of Figure 1
visualizes beta distribution for several values of α and β. Beta distribution has
several properties which make it very convenient to use in Bayesian analysis:

• It is bounded on the domain [0, 1] which makes it ideal to represent prob-
ability distribution of parameters that are themselves probabilities, such
as the ones in binomial or Bernoulli distributions, as well as percentages
and proportions.

• Also, it is conjugate to binomial and Bernoulli (as a special case of bi-
nomial) distributions. This means that if we express our prior as beta
distribution and use binomial or Bernoulli as sampling distributions our
posterior will again be a beta distribution. This allows us to iteratively
estimate the posterior as we observe each new data point.

In successive binomial trials, where each outcome is either a success or a
failure, parameter α indexes the number of successes and parameter β indexes
number of failures, the beta distribution gives us posterior distribution of the
parameter p of the binomial distribution. Starting from a �at prior distribution
Beta(1, 1) we can iteratively update posterior as we observe each new data
point. Figure 2 shows posterior distribution for parameter p after each of the
following consecutive outcomes: SSFSSFS (where S stands for success and F for
failure). The mean of the beta distribution is α

α+β and the mode (maximum a

posteriori estimate or MAP) α−1
α+β−2 (for α, β > 1) which means that in the limit

of large number of observations our posterior distribution will be characterized
by the frequencies of successes and failures. For our particular seven consecutive
outcomes this would yield an estimate of p̂mean = 0.71 if estimated from mean
or p̂MAP = 0.80 if estimated from a mode of a posterior.
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Figure 2: Posterior distribution for parameter p after each of the following
consecutive outcomes: SSFSSFS (where S stands for success and F for failure).

Frequentist approach

Frequentists cannot model parameter of interest as a random variable, and so
cannot use the beta distribution for inference. However, they can model any
quantity derived out of data as a random variable, such as the actual number of
successes or failures. For this they can use a binomial distribution, which gives
probability of getting exactly k successes in n trials:

P (k;n, p) =

(
n

k

)
pk(1− p)n−k (3)

Where
(
n
k

)
is a binomial coe�cient equal to n!

k!(n−k)! , and p ∈ [0, 1], n ∈ N.
Note that binomial distribution is a discrete distribution, and P (k;n, p) is a
probability mass while p(x;α, β) in the case of beta distribution is a probability

density. Right panel of Figure 1 visualizes binomial distribution for various
parameters p and n, and table bellow list the probabilities for our particular
case of six measurements.

For our particular case of seven consecutive measurements SSFSSFS (where
S stands for success and F for failure) the respective probabilities for exactly
�ve successful outcomes are P (X = 5|n = 7, p = 0.25) = 0.001, P (X = 5|n =
7, p = 0.5) = 0.164 and P (X = 5|n = 7, p = 0.75) = 0.311. Depending on
our assumed probability p the probability of �ve successful outcomes changes.
This is why frequentists are often interested in null hypothesis testing - they
assume some value of p and then try to reject. In clinical trials, the base value

5



p0 (the null hypothesis) is usually a value obtained from a control group and the
goal of the hypothesis testing is to show whether the evidence is strong enough
to reject this null hypothesis - that is, that the measured e�ect is statistically
signi�cant. Statistical signi�cance is measured as the probability of a more

extreme outcome then the one actually observed. In our case this means the
probability of observing more than �ve successful outcomes P (X > 5|n = 7, p) =
1 − F (X = 5|n = 7, p), where F is a cumulative distribution function. This
probability is called p-value and in our case it is p0.25 = 0.0013, p0.5 = 0.0625
and p0.75 = 0.4450. The smaller the p-value the more evidence there is that our
outcomes are not due to the statistical chance. We can report just the p-value
directly or we can choose a signi�cance level α which gives us a threshold for
rejecting the null hypothesis, the most common being α = 0.05 and α = 0.01.
From our data we can see that we can reject hypothesis p = 0.25 with signi�cance
level α = 0.01, while hypotheses p = 0.5 and p = 0.75 cannot be rejected with
neither of these signi�cance levels.

Let us summarize di�erences between frequentist and Bayesian approach
using the above example:

• Bayesians were required to specify a prior distribution - our knowledge of
the parameter before any data is observed. We had chosen �at uniform
prior B(1, 1).

• Aside from uniform prior, Bayesians condition only on the data that was
actually observed - in this case number of successes α and number of
failures β.

• Frequentist have to condition on the quantities related to the experimental
design - in this case total number of trials n which is required in the
binomial distribution.

• Additionally, frequentists have to condition on the assumed value of the
parameter of interest - in this case probability of obtaining a success p.
This makes frequentist approach naturally applicable to hypothesis test-
ing where one �rst assumes some value of a parameter and then seeks
statistical evidence to reject or accept this hypothesis.

• While beta distribution gives us an answer about the parameter of interest
(probability of each individual success), binomial distribution gives as an
answer about the data that we can potentially observe (probability of
obtaining an exact number of successes).

Lindley's paradox

A rather striking example of when frequentist and Bayesian approach can lead
to a completely di�erent inferences is known as Lindley's paradox [8]. It usually
arises when one considers two mutually exclusive hypothesis for a parameter of
interest - H0 and H1, and one of them is very precise while the other is very
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di�use. For example, when H0 is a null hypothesis that a certain proportion
θ = 0.5, while alternative hypothesis H1 is θ 6= 0.5. Examples from literature
include inference of the proportion of male versus female births, extra sensory
perception (ESP) [9, 10], and statistics of particle collisions [11].

Frequentist would test the hypothesis H0 by calculating probability of ob-
serving the realized proportion in the data, either using a binomial distribution
directly or, in case of large number of examples, a normal approximation. As-
suming that there really is a slight bias in the data (meaning θ 6= 0.5), hypothesis
H0 would probably be easily rejected with a certain signi�cance level α. Notice
that frequentist methodology does not explicitly reference alternative hypoth-
esis H1 in its analysis, which is one of the reasons for the paradox. Inference
with Bayesian methodology calculates the full posterior distribution for H0 and
the observed data D (which, in our case, is just the observed proportion):

P (H0|D) =
P (D|H0)P (H0)

P (D|H0) + P (D|H1)
(4)

As we see we have to include an explicit reference to H1 through P (D|H1). If
we assume that both hypothesis are equally likely a priori (P (H0) = P (H1) =
0.5) we can disregard priors. The question we are answering now is slightly
di�erent than in the frequentist case because we are evaluating hypothesis H0 in
the light of alternative hypothesisH1. The answer might well be that hypothesis
H0 better explains the data than alternative hypothesisH1, which is in apparent
contradiction with the conclusion of the frequentist approach which rejected
H0. This should not surprise us, as the presence of slight bias in the data
means that θ is indeed very close to 0.5, and alternative hypothesis θ 6= 0.5
is not informative enough to in�uence the posterior. This does not mean that
frequentist and Bayesian methods are in disagreement, just that they answer
di�erent questions and care should be taken when interpreting results of the
inference.

Con�dence intervals and credibility intervals

I should note here that frequentists and Bayesians calculate two di�erent types
of intervals when making inference about unknown parameters. These intervals
can coincide under some speci�c conditions, but in any case their interpretations
are very di�erent and care should be taken not to confuse them [12]:

• Con�dence intervals: In repeated sampling, 90% of realized intervals
cover the true parameter θ. In other words (if we interpret frequency as
probability), con�dence intervals give us the probability that the interval
covers the true value of parameter θ.

• Credibility intervals: For these data, there is a 90% probability that
the parameter θ is in the interval. In other words, credibility intervals
give us the probability that the true value of parameter θ lies within the
interval.
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Figure 3: Con�dence intervals (left) are de�ned so that certain proportion of
them covers the true parameter, while credibility intervals (right) are de�ned so
that they cover the true parameter with certain probability.

Notice that in the de�nition of con�dence intervals the parameter is �xed

and interval is probabilistic, while in the de�nition of credibility intervals it is
the other way around. It is quite common to interpret con�dence intervals
as if they express a probabilistic statement about the parameter, while quite
contrary, they express a probabilistic statement about the interval ! Figure 3
highlights di�erence between con�dence and credibility intervals. Con�dence
intervals are de�ned so that certain proportion of them covers the true parame-
ter, while credibility intervals are de�ned so that they cover the true parameter
with certain probability.

3 Linear regression

We will show how frequentist and Bayesian approach di�er when performing
linear regression. Our two main use cases are parameter �tting, where we try to
�nd parameters of the best �tting linear model, and model selection, where we
try to evaluate a �t made by several competing models. Some of these examples
were inspired by the similar discussion in [13]. We de�ne our linear model like
this:

y(x; θ) = θ0 + θ1x (5)

y ∼ N (y, σ2) (6)

Where parameter θ0 is intercept and θ1 is slope. Error of the model is
assumed to be normally distributed (Gaussian) with mean zero and standard
deviation σ. Left panel of Figure 4 shows an example of 15 data points generated
from the above model.
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Figure 4: An example data generated from our model (left). Maximum likeli-
hood estimate of linear model for our data (right).

Frequentist approach to linear regression

The probability for each data point is given with the normal distribution:

p(xi, yi | θ, σ) =
1√

2πσ2
exp

[
−[yi − ŷ(xi | θ)]2

2σ2

]
(7)

And the likelihood for all N data points (xi, yi) is:

L({(xi, yi)} | θ, σ) =

N∏
i=1

p(xi, yi | θ, σ) (8)

Due to the small probabilities involved it is much more convenient to express
instead a log-likelihood, which is proportional to the likelihood:

logL({(xi, yi)} | θ, σ) ∝ (2πσ2)−N/2 exp

[
− 1

2σ2

N∑
i−1

[yi − ŷ(xi | θ)]2
]

(9)

The parameters θ0 and θ1 can now be estimated by a maximum likelihood es-
timation - that is, by �nding parameters that maximize log-likelihood. Because
of the monotonicity of logarithm these same parameters also maximize original
likelihood function. Because we assumed Gaussian errors on our linear model
the resulting log-likelihood is a convex function with a single global minimum
which we could �nd analytically by setting d logL/dθ = 0 and solving for θ.
This procedure is equivalent to the least squares method because we are search-
ing for a solution that minimizes sum of squared errors. We can perform this
optimization using Python's SciPy library for scienti�c computing [15]. Right
panel of Figure 4 shows maximum likelihood estimate of linear model for our
data.

9



Bayesian approach to linear regression

Instead of performing maximum likelihood estimate, which is essentially a point
estimate, a Bayesian approach is to instead calculate the whole posterior dis-
tribution for the parameters of interest. From Bayes theorem (equation 2) our
posterior is proportional to the product of likelihood and prior:

p(xi, yi | θ, σ) ∝ p(xi, yi | θ, σ) p(θ, σ) (10)

Where likelihood p(xi, yi | θ) is equivalent to the likelihood in the frequentists
case. Care should be taken in the choice of prior on the parameters p(θ). In
general we would like to use an uninformative prior in order to in�uence our
posterior as little as possible. Uniform prior is appropriate for θ0 (intercept)
but not for θ1 (slope) as it biases towards models with higher slope. Uniform
prior is also not appropriate for σ as it is not invariant to scaling, so we will use
Je�reys prior. Our prior is now this [14]:

p(θ, σ) ∝ 1/σ(1 + θ21)−3/2 (11)

In this simple case we could analytically calculate the posterior distribution,
but in general case this is not possible. Easier and more straightforward way
is to use Markov Chain Monte Carlo [2, 16] to sample from the posterior, and
use these samples to characterize posterior distribution. For this we can use
Python's library PyMC 1 - an implementation of Metropolis-Hastings sampling
method [17]. Figure 5 shows the results for frequentist and Bayesian approach.

We see that the two approaches yielded almost exactly the same solution.
This should not be surprising as frequentist methods are sometimes, for good
reasons, derived as optimal under certain Bayesian conditions. In this particular
case, maximum likelihood estimation under the assumption of Gaussian errors
produces the same solution as Bayesian approach with an uniform prior on the
slope parameter. The advantage of Bayesian approach is that we obtain the
whole posterior distribution, not just its mode or mean, and this allow us to
estimate uncertainty of our estimate. The left panel of Figure 5 shows the
posterior for the parameters θ0 and θ1 from which we can extract parameters
which fall within �rst standard deviation from the mean. Right panel of Figure 5
shows the resulting linear models. The uncertainty is lowest in the middle of
the data range because this is where majority of linear models have to pass.
The highest uncertainty is on the edges of the data range as expected.

4 Model selection

So far we have considered a problem of �nding parameters θ while assuming a
�xed model M. If the model is not known in advance, and if there are mul-
tiple plausible models which can explain the data, our inference methodology
needs to be able to evaluate competing model through model selection. In this

1https://github.com/pymc-devs/pymc
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Figure 5: Results of linear regression with frequentist and Bayesian approach.
MCMC trace of the parameters θ0 and θ1, with best solution marked in red
(left). Best �tting lines infered by maximum likelihood (frequentist approach)
and as a mean of the posterior distribution (Bayesian approach, right). The
uncertainty bands on the right panels correspond to the models that fall within
�rst standard deviation from the mean of the posterior.

section we will demonstrate how we can choose between competing models us-
ing frequentists and Bayesian approach. First example is linear regression with
polynomials on a two dimensional data, where model selection means selecting
an appropriate degree of the polynomial to use in regression. Second example
is regression using exponential and logarithmic functions, which is a challenge
for frequentist approach because there is no easy way to estimate model com-

plexity [22], an issue which Bayesian model selection e�ectively solves.

4.1 Example 1: Linear regression with polynomials

Figure 6 shows our 15 data points and maximum likelihood linear and quadratic
models. We will restrict this example to choosing between a linear and a
quadratic model, although methodology is applicable in general. Log likeli-
hood for the linear model is −14.32, and for the quadratic model is −16.12.
This would suggest that quadratic model provides a better �t to the data, but
this is expected because quadratic model has more degrees of freedom. This is
demonstrated on the Figure 6 where we plot log likelihoods for polynomials up
to degree nine. The higher the degree of polynomial the better the �t, but this
obviously comes at a price of over�tting - model is too complex for the data it
should describe and it �ts noise along with the underlying pattern. In general,
polynomial of degree n will perfectly �t n + 1 data points, but does not mean
that polynomial of highest degree is the best choice for a model. The �t of a
model has to be adjusted with the complexity of a model, with more complex
models getting more penalty on their log likelihoods. How exactly to do this in
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Figure 6: An example data generated from our model and linear and quadratic
�t to the data.

frequentist and Bayesian approach is described in the following sections.

Frequentist model selection

Recall that in frequentist interpretation both data and all quantities derived
from data are modeled as random variables. In our regression we had de�ned
our likelihood as a sum of Gaussian random variables, and these are distributed
according to a χ2 distribution with certain degree of freedom. So we can use this
distribution to evaluate �t of our model to the given data. Left panel of Figure 8
shows a χ2 distribution with one degree of freedom for the linear model and a
χ2 distribution with two degrees of freedom for the quadratic model. Di�erence
between χ2 statistics for our two models gives us a probability that we will
observe data that favors quadratic model when linear model is true.

Right panel of Figure 8 shows this probability. Assuming the linear model
is true, there is a 6% probability that simply by chance we would observe data
that favors quadratic model more than the linear. If we choose the signi�cance
level α = 0.05 and perform null hypothesis testing we will not be able to reject
the null hypothesis that data came from the linear model. So in this case there
data is ambiguous and there is no strong evidence to suggest data really came
from a quadratic model.

Bayesian model selection

Again, Bayesian model selection starts from Bayes theorem [5]. This time,
the crucial term is model evidence or marginal likelihood p(D|Mi) that served
as a normalizing constant in parameter inference. It can be expressed as a
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Figure 7: Log likelihoods for polynomials up to the degree nine (left), and the
resulting polynomial �ts (right). In general, polynomial of a higher degree will
always provide a better �t to data, although this does not necessarily mean that
it will also provide a better �t for yet unseen data.

Figure 8: χ2 distribution with one degree of freedom for the linear model and
a χ2 distribution with two degrees of freedom for the quadratic model (left).
Assuming the linear model is true, there is a 6% probability that simply by
chance we would observe data that favors quadratic model more than the linear
(right).
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marginalization of likelihood over all possible parameter values:

p(D|Mi) =

∫
p(D|θ,Mi)p(θ|Mi)dθ (12)

If we view likelihood as a probability distribution over all possible datasets
then its marginalization serves as a form of Occam's razor [19] which restricts
the complexity of models - models which spread their likelihood over too many
datasets will assign small probability to each of them, and will be outperformed
by simpler models. The ratio of model evidences is called a Bayes factor [20]
and it tells us how did the prior odds for model changed after data observation:

p(Mi|D)

p(Mj |D)︸ ︷︷ ︸
posterior odds

=
p(D|Mi)

p(D|Mj)︸ ︷︷ ︸
Bayes factor

p(Mi)

p(Mj)︸ ︷︷ ︸
prior odds

(13)

Because we are dealing with two very simple models we can perform numer-
ical integration of the likelihood directly for the two models. We will do this
with numerical integration routines available in Python's library for scienti�c
computing SciPy [15]. Bayes factor in favor of quadratic model is 1.15, which
corresponds to a very weak support to the quadratic model [20]. Similar as in
the frequentist approach, we can argue that the evidence is not strong enough
to reject the simpler linear model.

4.2 Example 2: Linear regression with exponential and

logarithmic models

Let us now consider two models with the same number of parameters, but with
di�erent functional forms:

y = axb + error (Steven's model)

y = a ln(x+ b) + error (Fechner's model)
(14)

How will we perform model selection here? Just naively employing χ2 statis-
tics with the given degrees of freedom will provide the same estimate for the two
models, and we somehow suspect that this can not be correct. Figure 9 shows
data generated from Steven's and Fechner's model and maximum likelihood �ts
for each model.

In this particular example, log likelihood for Steven's model is around −13,
regardless of whether the data was generated from Steven's or Fechner's model.
On the other hand, log likelihood for Fechner's model is −53.86 for data gen-
erated by Steven's model and −14.95 for data generated by Fechner's model.
Table 1 shows model selection using just maximum likelihood estimates for 200
datasets generated by Steven's or Fechner's model. We see that Steven's model
is able to �t data generated from Fechner's model even better than the Fech-
ner's model itself! As both models have the same number of parameters these
additional degrees of freedom have to be due to the functional form of the model.
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Figure 9: Data generated from Steven's (left) and Fechner's (right) models and
maximum likelihood �ts.

Table 1: Model selection for Steven's and Fechner's model using maximum
likelihood. Numbers represent number of times we selected each model and the
actual model from which data were generated.

data from Steven's data from Fechner's
Steven's �t 100 46
Fechner's �t 0 54

However, even in this case when models have the same number of parameters,
Bayesian model selection using marginal likelihood should still work! Marginal-
ization over the space of parameters implicitly accounts for the expressiveness
of models arising either through number of parameters or the functional form of
the model. As discussed in [21] and [22], the in�uence of the functional form of
a model can be nonneglibigle for small samples. Table 2 shows model selection
using Bayesian model selection for 200 datasets generated by Steven's or Fech-
ner's model. We see that additional degrees of freedom inherent in the Steven's
model are accounted for and that we are able to identify underlying model in
all cases.

Table 2: Model selection for Steven's and Fechner's model using marginal like-
lihood. Numbers represent number of times we selected each model and the
actual model from which data were generated.

data from Steven's data from Fechner's
Steven's �t 100 0
Fechner's �t 0 100
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5 Conclusion

This seminar provided a brief introduction to the conceptual and practical dif-
ferences between Bayesian and frequentist approach to statistical inference. I
hope that it is clear by now that Bayesian theorem, being one of the fundamental
theorems of probability theory, holds universally regardless of which approach
you choose to follow. What is controversial is the usage of the theorem for statis-
tical inference, or �inverse probability� - a term which was in wide use until the
beginning of 20th century [23]. The underlying philosophical di�erence is in the
de�nition of the probability itself - while Bayesians interpret probability as de-
grees of belief, or knowledge, about unknown parameters, frequentists interpret
probability through frequencies of real or hypothetical events. The practical
di�erence is that Bayesians are willing to express models and their parameters
as random variables, and to use full power of Bayesian theorem for inference,
while frequentist regard model and their parameters as �xed, although unknown,
and perform their inference from there. Both approaches have their strengths
and weaknesses, with Bayesian being conceptually more straightforward to use
although computationally more demanding than the frequentist approach.
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