
Meta-Modeling Execution Times of

RapidMiner operators

Matija Pi²korec1, Matko Bo²njak1,2, and Tomislav �muc1

1Ru�er Bo²kovi¢ Institute, Croatia
2Faculty of Engineering, University of Porto, Portugal

Abstract

Knowing the execution time of a computational model, especially
when dealing with large data, is crucial in deciding whether the solu-
tion of the problem is attainable in acceptable time. In the case of data
mining processes, typically both the time needed for model learning and
model application could be of importance. We developed a meta-mining
framework for execution time estimation of data mining algorithm built
in RapidMiner. Operator execution time estimation is treated as a ma-
chine learning problem for which prediction models are built using exe-
cution times obtained by running algorithms on a set of predetermined
datasets. With appropriate re�tting this experimental methodology is
applicable to any data mining environment. We present overall frame-
work with modelling results for a subset of RapidMiner operators, and
compare non-parametric distance measures based predictions with poly-
nomial function �tting. Finally, integration of these models in the form
of standalone RapidMiner extension is demonstrated and issues related
to reliability, scalability and applicability for the overall work�ow exe-
cution time modelling are discussed.

Keywords: meta-mining, data mining, execution time estimation,
RapidMiner extension

1 Introduction

Execution time is one of the key elements of designing both scienti�c and
commercial-level solutions. The magnitude of time cost frequently decides
about which methods might be considered and which might be instantly dis-
carded due to their infeasibility. Knowing the dependence of the algorithm's
execution time on various data properties would greatly bene�t users of data
mining models.



One way to estimate resource consumption is by manual or automatic
code analysis and using analytical methods of computational complexity the-
ory [2, 11, 3]. However, this approach requires precise knowledge of the func-
tion modeling the resource consumption and renders this approach impractical
for algorithms whose computational complexity cannot be clearly stated as a
function of input data, i.e. optimization methods like Support Vector Machine
(SVM).

In this paper we present experimentation and estimation methodology for
predicting execution times of various RapidMiner1 operators that we devel-
oped as a part of the e-LICO2 project. We treated execution time estimation
as a machine learning problem and calculated an estimation model for each
algorithm. This approach was already demonstrated to be e�ective for general
tasks in heterogeneous metacomputing environment [6] and for RapidMiner
classi�ers training time with parameter optimization [12]. These are the basic
requirements we wanted our framework to satisfy:

1. Portability/adaptability: The framework should be easily adaptable
to di�erent execution environments and di�erent data mining algorithms.

2. Robustness and usability: The framework should be robust and us-
able for algorithms with di�erent characteristics.

3. Speed: Estimates should be generated instantaneously. This is espe-
cially important in a work�ow environment where estimates for multiple
operators have to be performed.

4. Accuracy: Estimates should be accurate enough for everyday assign-
ments.

The outline of this work is the following. In section 2 we describe our ex-
perimentation methodology, from the datasets to the operators used. Section 3
describes two types of estimation models we use: one based on nonparametric
distance measures and one based on simple polynomial function �tting. Fi-
nally, sections 4 and 5 describe prototype of our execution time extension for
RapidMiner and illustrate its use on a simple use case.

2 Experimentation methodology

Our initial motivation was to investigate whether the machine learning ap-
proach can be applied to the execution time problem in the terms of repro-
ducibility of results, scalability and portability. This is why we decided to

1http://rapid-i.com/
2http://elico.rapid-i.com/



concentrate on one particular and widely used data mining environment, in
our case RapidMiner. This ensures our framework is easily accessible to a
large community of data miners.

Not all operators contribute equally to the execution time. Therefore we
decided to model a selection of classi�cation and feature weighting operators
because these typically carry most of the execution time overhead. Table 1
lists RapidMiner operators we modeled with our execution time framework.

Classi�cation Feature weighting
AutoMLP Weight by Chi Squared Statistic

Data to Weights Weight by Deviation

Decision Stump Weight by Gini Index

Decision Tree Weight by Information Gain

Default Model Weight by Information Gain Ratio

Linear Discriminant Analysis Weight by PCA

Naive Bayes Weight by Relief

Random Forest Weight by Rule

Random Tree Weight by SVM

Regularized Discriminant Analysis Weight by Uncertainty

Rule Induction Weight by User Speci�cation

Single Rule Induction Single Attribute Weight by Value Average

SVM (LibSVM): linear and rbf kernel

Table 1: RapidMiner operators we modeled with our execution time estimation
framework and whose execution time models are available in our prototype
extension.

Most of these operators have parameters that nontrivially in�uence their
execution time but here we avoided their detailed modeling and modeled only
the default parameters for two reasons. First, we wanted to keep the com-
plexity of our models low. Second, we target our framework for inexperienced
users who are are typically interested only in the behaviour with the default
parameters.

However, for some algorithms, SVM being one of them, there are no sensi-
ble default parameters so it makes sense to investigate their in�uence on the
execution time and incorporate them into the estimation model. This is why
in the case of SVM we explicitly model two kernel types: linear and radial
basis function kernels.

2.1 Meta-features selection

We concentrate on two dataset meta-features easily available in RapidMiner:
number of examples (N) and number of attributes (M), although in principle



any number of meta-features can be used.
We also experimented with other meta-features more time consuming to

obtain and not readily available in RapidMiner. These include information
theoretic and statistical-based features fromMETAL3 project [7], features used
to describe categorical features (information theoretic) and continuous features
(statistical-based) [9], geometrical and topological-based features [5, 4, 8], and
landmarking features [10, 1].

For some of them we concluded that the additional time cost in obtaining
those meta-features would increase the time analysis and in some cases over-
take the execution time of some of the models, and for others we did not see
substantial increase in accuracy of estimation. As an additional bene�t, low
number of meta-features allows intuitive visualization of estimation models,
like the ones in Figures 2 and 4, that aids user experience.

2.2 Measuring execution time

Measurement of execution times is performed inside RapidMiner and auto-
mated through a dedicated work�ow4 whose diagram is showed on Figure 1.
Each operator is trained on 200 random polynomial classi�cation datasets
with number of examples and number of attributes ranging randomly from 4
to 2000. Each measurement is performed �ve times and median time is taken
as reference for that combination of examples and features.

Figure 1: Diagram of the execution time measurement work�ow.

2.3 Machine calibration

Because execution time depends on both the algorithm implementation and
the machine overall performance capabilities we decided to introduce a cali-

bration parameter that makes our estimation framework portable to new ex-
ecution environments. This avoids the need to perform new set of execution

3http://www.metal-kdd.org/
4http://www.myexperiment.org/work�ows/2905.html



time experiments each time the environment changes. In general, calibration
procedure should provide reliable indicator for overall performance capabilities
of the execution environment, and it should be time-limited so that it can be
used even for online recalibration (e.g. on the same machine but di�erent load
conditions).

Our calibration procedure consists of benchmark RapidMiner work�ow5

that iterates some simple operator ("Naive Bayes" in our case) on dataset
of �xed size and takes median of all execution times. This median time is
compared to a reference time from a machine on which the experiments were
performed and their ratio is used as a scaling factor for execution times on
a new machine. We found this approach, where just one landmark feature is
used to describe overall machine performance, robust enough for our needs,
although more elaborate techniques with more features are also possible [12].

Figure 2: Graph representations of execution time models for Pager (left) and
polynomial (right) models as visualized in our extension. This example is for
"Weight by Information Gain" operator.

3 Estimation methodology

Having selected small number of features for our execution time estimation we
decided to use two simple models as our estimators:

• Pager: A kNN-based algorithm for regression [13]. We use it here be-
cause it is parameterless and provides reliable and robust execution time
estimations without the need for explicit statement of the regression
equation. Our implementation is in Java.

5http://www.myexperiment.org/work�ows/2903.html



• Polynomial: Cubic function �tting suitable for small number of meta-
features. Our implementation is simple gradient descent optimised with
fminsearch function in Matlab.

Figure 2 shows graphical representations of two estimation models in our
extension: Pager as a collection of points corresponding to the 200 experi-
mentation datasets and polynomial as surface plot in the meta-features space
spanned by number of examples and number of attributes. Polynomial �tting
gives stable and accurate estimations even in the range outside original exper-
iments (extrapolation), as can be seen in Figure 3. On the other hand, Pager
estimations are more stochastic. This is demonstrated on the graph on right
side of Figure 5 in the simple work�ow consisting of "Weight by Information
Gain" and "SVM" with rbf kernel operators. In its default implementation
Pager assumes linear extrapolation so it always underestimates execution times
for larger datasets because they typically exhibit quadratic, cubic or even ex-
ponential relationship on the dataset size. This problem can probably be
alleviated by working with the logarithm or square root of execution times.

Figure 3: Extrapolation of estimated execution times to parameter ranges not
used in experimentation for polynomial model. This example shows execution
time estimates for a simple work�ow consisting of "Weight by Information
Gain" and "SVM" with rbf kernel operators where individual estimates for
each operator are summed. Graphs show comparison between estimates and
real values of execution times for test cases inside experimentation range (blue
triangles) and outside experimentation range (green circles). Red points on
the right are real execution times while red line on the left is a reference
representing ideal estimation.



4 Execution time extension for RapidMiner

We implemented a RapidMiner extension that interactively displays execution
time information for operators selected in the main process. The screenshot
of the extension is shown in Figure 4 and interactive graphs of two estimation
models in single and multiple selection modes on Figure 2.

As a distance-based estimator, Pager model is represented with pointwise
data corresponding to the training datasets while cubic model is represented
with a polynomial surface plot. Figure 2 shows both models as represented in
our extension. When multiple operators are selected in the process window,
the resulting execution time estimation is calculated as the simple sum of the
individual estimations, assuming the same input dataset is applied to each
operator. The resulting graphical representation of the model obtained in this
way in Figure ?? shows estimates for the uniform grid of �ctional datasets
that serve as rough approximation of the execution time surface.

Figure 4: Screenshot of extension showing basic functionalities: (1) sliders
for choosing number of attributes and examples for the input dataset, (2)
prediction model (Pager or polynomial), (3) info box about for the estimation
model, (4) list of currently selected operators and (5) their execution time
estimate, (6) interactive display showing execution time surface in relation to
the number of parameters and number of attributes.

Figure 4 shows graphical user interface of our extension inside RapidMiner.
User can choose the parameters of the input dataset (number of examples
and number of attributes) and estimation model ("Pager" or "Cubic" where
cubic stands for polynomial) for operator selected in the process view. When
multiple operators are selected they are listed and the names of the ones that



do not have an estimation model are colored red. Model representation in the
form of interactive 3D plot is shown on the right. It includes a red reference
point that locates resulting execution time. The numerical value of execution
time estimate is also displayed.

5 Use case: simple classi�cation work�ow

Figure 5 shows simple use case consisting of data generation operator, feature
weighting operator and classi�cation operator. "Generate Data" operator gen-
erates random 200 polynomial classi�cation datasets with number of examples
and number of attributes randomly selected from the range [4, 2000]. Esti-
mates are performed for feature weighting ("Weight by Information Gain")
and classi�cation ("SVM" with rbf kernel) operators individually and then
summed to obtain the �nal estimate. The estimate is then compared with
the true value of the execution time and the results are plotted on the right
hand-side of Figure 5.

Figure 5: Simple use case consisting of feature weighting operator ("Weight by
Information Gain") and classi�cation operator ("SVM" with rbf kernel). On
the right is the comparison of estimated and real execution times for estimation
with Pager and polynomial model.

6 Conclusion and future work

Correctly dealing with the metadata propagation is one of the most press-
ing issues for increasing the quality of work�ow estimates. Characteristics of
datasets are changing during work�ow execution: examples are sampled out



of the dataset, attributes are selected with various criteria. We expect that
some of the cases could be dealt with e�ciently before actual execution of the
work�ow. Unfortunately, some cases will probably stay elusive unless estima-
tion is performed in real-time, during the work�ow execution. This is the case
when meta-features change according to the nontrivial criteria not available
until the runtime, or criteria that is not computable from the meta-features
themselves. For example, in sampling that selects examples with values less
or greater than some prespeci�ed values (because information on the number
of such values is not encoded in the meta-features) or feature selection that
selects best K features where K is a macro whose value is not de�ned until the
runtime.

Parallel execution of operators is another issue that in�uences overall ex-
ecution time and that becomes more important due to the advances in mul-
tiprocessor architecture. It manifests on the level of work�ows as well as on
the level of individual operators. We suppose pure machine learning approach
will not be su�cient to solve this problem without the additional informa-
tion on the algorithm implementations and inner workings of the execution
environment (i.e. operating system).

Automatic collection of execution time data can potentially make experi-
mentation methodology easier and more up-to-date with the current changes
in the operator implementations. We suppose this could be done in a similar
manner as collecting operator usage statistics that already exist in Rapid-
Miner. Consolidating execution times from various machines and execution
environments would probably prove as a fruitful future research direction.

Acknowledgments: This work is supported by the European community 7th

framework ICT-2007.4 (No 231519) "e-LICO: An e-Laboratory for Interdisci-
plinary Collaborative Research in Data Mining and Data-Intensive Science".

References

[1] S. D. Abdelmessih, F. Shafait, M. Reif, and M. Goldstein. Landmarking
for meta-learning using rapidminer. In RapidMiner Community Meeting

and Conference, September 2010.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and Stein C. Introduction

to Algorithms. The MIT Press, 3rd edition, 2009.

[3] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustavsson, and H. Hansson.
Towards industry strength worst-case execution time analysis, 1999.



[4] T. K. Ho, M. Basu, and M. Law. Measures of geometrical complexity in
classi�cation problems. Data Complexity in Pattern Recognition, pages
1�23, 2006.

[5] T. K. Ho and Basu. M. Complexity measures of supervised classi�cation
problems. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 24(3):289�300, 2002.

[6] M. A. Iverson, F. Özgüner, and L. C. Potter. Statistical prediction of
task execution times through analytic benchmarking for scheduling in a
heterogeneous environment. IEEE Transactions on Computers, 48:1374�
1379, 1999.

[7] C. Koepf, C. Taylor, and J. Keller. Meta-analysis: Data characterisation
for classi�cation and regression on a meta-level. In In proceedings of

International Symphosium on Data Mining and Statistics, 2000.

[8] A. Orriols-Puig, N. Maci, and T. K. Ho. Documentation for the data
complexity library in c++. Technical report, La Salle - Universitat Ramon
Llull, 2010.

[9] Y. Peng, P.A. Flach, C. Soares, and P. Brazdil. Improved dataset char-
acterisation for meta-learning. Discovery Science, pages 141�152, 2002.

[10] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by
landmarking various learning algorithms. In In proceedings of Interna-

tional Conference on Machine Learning, 2000.

[11] P. Puschner and Ch. Koza. Calculating the maximum execution time of
real-time programs. Real-Time Systems, 1(2):159�176, 1989.

[12] M. Reif, F. Shafait, and A. Dengel. Prediction of classi�er training time
including parameter optimization. In Proceedings of the 34th Annual Ger-

man Conference on Arti�cial Intelligence, volume 7006, pages 260�271,
2011.

[13] H. Singh, A. Desai, and V. Pudi. Pager: Parameterless, accurate, generic,
e�cient knn-based regression. Database and expert systems applications,
6262:168�176, 2012.


