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Part I

Complex networks
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What is a network?

Network

A set of nodes and a set of connections between them, along with any
number of their properties.
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Why are networks useful?

Many real world systems can be represented as networks.

Figure: Social networks.
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Why are networks useful?

Figure: Airline network.
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Why are networks useful?

Figure: Internet.
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Why are networks useful?

Figure: Yeast protein interaction network.
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Universal properties of real networks

Heavy tail degree distribution

Number of connections k that each node has is distributed according to a
power-law with Pk ∼ k−γ as k →∞

Small diameter

Maximum length of the path that connects any two nodes in the network
scales logarithmically with the number of nodes.

Clustering of nodes

Clustering manifests on a microscale where nodes form triangles, on a
mesoscale where they form communities, and on a global scale where
they form core-periphery structure of the network.
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Part II

Model selection
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Models on networks

Growth models 1 (for example, preferential attachment model)

Community models 2

Contact processes

Epidemic spreading (for example, Susceptible-Infected-Recovered

model)
Social in�uence 3

Information di�usion 4

1A.-L. Barabási and R. Albert, �Emergence of scaling in random networks,� Science, 1999.
2M. Girvan and M. Newman, �Community structure in social and biological networks,� PNAS, 2002.
3A. Anagnostopoulos, R. Kumar, and M. Mahdian, �In�uence and correlation in social networks,� 2008
4Y. Moreno, M. Nekovee, and A. Pacheco, �Dynamics of rumor spreading in complex networks,� Physical Review

E, 2004.
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Model selection

The central goal of model selection is to select a model or a class of
models which generalizes best to unobserved data. In general this is not
easy because of the bias/variance tradeo�.

The crucial factor that determines the model's generalization
performance is its complexity, which is a measure of model's degrees of
freedom which allow it to �t many di�erent datasets.
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Model selection and parameter estimation

Result of parameter estimation is always one speci�c hypothesis, while
model selection gives us a set of hypothesis. For example, a set of
hypotheses might be a set of all kth degree polynomials, or, even more
generally, a set of all polynomials.

Some bene�ts of performing model selection instead of parameter
estimation:

Finding a �general theory�. For example, when we want to select a
model that performs well under a variety of circumstances for which
particular parameters of a model may di�er.

Easier creation of model hierarchy. If our model space has a
hierarchical structure we can easily infer hierarchical models by
evaluating subsets of models and composing them into hierarchy.
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Bayesian model selection

If we consider a set of models {Mi}, where each modelMi is de�ned as
a probability distribution over an observed data set D, then we are
searching for a model with the largest posterior distribution:

p(Mi |D) ∝ p(D|Mi )p(Mi ) (1)

The prior p(Mi ) expresses a prior probability of di�erent models before
any data is observed. Model evidence (also known as marginal likelihood)
p(D|Mi ) expresses the preference for di�erent models given the data:

p(D|Mi ) =

∫
p(D|θ,Mi )︸ ︷︷ ︸

likelihood

p(θ|Mi )︸ ︷︷ ︸
prior

dθ (2)

Note that the parameters θ of a model are marginalized (integrated) out.
This has three consequences (two positive and one negative)!
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Model evidence

Consequences of the marginalization of the parameters θ from the model
evidence:

p(D|Mi ) =

∫
p(D|θ,Mi )p(θ|Mi )dθ

1) this allows to meaningfully compare models irrespective of their
parameterizations
2) this implicitly restricts the complexity of the model, and in this way
prevents the over�tting of the model to the data
3) marginalization of the parameters is computationally very hard problem
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Model selection criteria - maximum likelihood

Complete marginalization of model evidence is often computationally
infeasible. Common approach is to just �nd the parameters for which
likelihood function achieves maximum.

Better approach is to take into account both the maximum value of
likelihood function (�tness) and additional term which accounts for the
shape of the likelihood function (complexity).
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Model selection criteria

Following model selection criteria use the maximum value of likelihood
function in addition to di�erent complexity terms in order to approximate
model evidence:

Akaike Information Criterion = −2 ln f (y |θ̂) + 2k

Bayesian Information Criterion = −2 ln f (y |θ̂) + k lnN

Rissanen's Stochastic Complexity = − ln f (y |θ̂)︸ ︷︷ ︸
�tness

+
k

2
lnN︸ ︷︷ ︸

complexity

(3)

Where k is the number of parameters of the model and N is the number
of observations. Here f (y |θ̂) corresponds to likelihood p(D|θ,Mi ) in
equation 2.

However, AIC, BIC and RSC do not consider the functional form of the
model, which can be di�erent even for models with the same number of
parameters!
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Model selection criteria - examples for AIC and BIC

We will illustrate the in�uence of functional form of the model with the
following examples from psychophysics 5:

y = axb + error (Stevens' model)

y = a ln(x + b) + error (Fechner's model)
(4)

Model �tted Data from Stevens Data from Fencher

Stevens 100% 63%
Fencher 0% 37%

Table: Model selection for two models using AIC and BIC. Although both
models have the same number of parameters, Steven's model �ts data more
easily, even in arti�cial case when data is generated from Fencher's model!

5J. Myung, V. Balasubramanian and A. Pitt, �Counting probability distributions: Di�erential geometry and
model selection,� PNAS, 2000.
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Model selection criteria

Minimum Description Length 6 accounts for the model's functional form
through Fisher Information Matrix Iij(θ):

MDL = − ln f (y |θ̂)︸ ︷︷ ︸
�tness

+
k

2
ln

(
N

2π

)
+ ln

∫
dθ
√
detI (θ)︸ ︷︷ ︸

complexity of a model family f

(5)

Model �tted Data from Stevens Data from Fencher

Stevens 99% 2%
Fencher 1% 98%

Table: Model selection for two models using MDL.

MDL is the length in bits of the shortest possible code which describes
the data generated by a model lying within the family f

6P. Grunwald, �Model selection based on minimum description length,� Journal of Mathematical Psychology,
2000.
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Other model selection criteria

Structural risk minimization 7 Where complexity of a model is
measured by Vapnik-Chervonenkis dimension.

False Discovery Rate 8 Used in multiple hypothesis testing. It works by
controlling the expected proportion of rejected null-hypotheses which
were in fact correct (�false discoveries�).

Cross-validation 9 Where a model is repeatedly learned and tested on
two disjoint subsets of the observed data, in hope to select for a model
that will have good predictive accuracy on unobserved data.

7V. N. Vapnik, Statistical Learning Theory, 1989.
8Y. Benjamini and Y. Hochberg, �Controlling the false discovery rate: A practical and powerfull approach to

multiple testing,� Journal of the Royal Statistical Society, 1995.
9M. Stone, �Cross-Validatory Choice and Assessment of Statistical Predictions,� Journal of the Royal Statistical

Society, 1974.
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Part III

Inference in networks
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Inference of network structure

Network growth models. Inference using maximum likelihood approach
through e�cient Monte Carlo sampling 10 11.

Community structure models. Two representations which allow
de�nition of hierarchical models and for which e�cient inference methods
were developed are Kronecker graphs 12 and block models 13.

10I. Bezáková, A. Kalai, and R. Santhanam, �Graph model selection using maximum likelihood,� 2006.
11J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, �Microscopic evolution of social networks,� 2008.
12J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, �Kronecker graphs: An approach

to modeling networks,� Journal of Machine Learning Research, 2010.
13T. Peixoto, �Parsimonious module inference in large networks,� Physical Review Letters, 2013.
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Inference of network structure - block models

Block models are convenient for representing hierarchical community
structure, and they can be e�ciently inferred using minimum description
length 14 15.

14T. Peixoto, �Parsimonious module inference in large networks,� Physical Review Letters, 2013.
15T. Peixoto, �Hierarchical block structures and high-resolution model selection in large networks,� Physical

Review X, 2014.
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Inference of network structure from information di�usion

Sometimes the information on network structure is lacking and the
information on dynamics on network (such as information di�usion) is
used to infer it. There are several algorithms which give a maximum
likelihood spreading cascade, using di�erent optimization strategies:

CoNNIe and NetRate use convex programming 16 17

NetInf uses submodular function optimization 18

InfoPath uses stochastic gradient descent 19

16S. Myers and J. Leskovec, �On the convexity of latent social network inference,� 2010.
17M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf, �Uncovering the temporal dynamics of di�usion

networks,� 2011.
18M. Gomez-Rodriguez, J. Leskovec, and A. Krause, �Inferring networks of di�usion and in�uence,� ACM

Transactions on Knowledge Discovery from Data, 2012.
19M. Gomez Rodriguez, J. Leskovec, and B. Schölkopf, �Structure and dynamics of information pathways in

online media,� 2013.
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Inference of processes on networks

In comparison to inference of network structure, inference of processes on
networks still lacks a suitable representation which would allow inference
of a broad range of dynamical models using an uni�ed probabilistic
framework.
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Inference of processes on networks

General network dynamics equation for processes on networks 20:

dxi
dt

= M0(xi (t)) +
N∑
j=1

AijM1(xi (t))M2(xj(t)) (6)

This equation can describe epidemic processes, biochemical dynamics,
birth-death processes and gene regulatory dynamics 21.

Minimal functional form of this equation can be infered using aggregated
features of the transient response xi (t) and the response matrix Gij ,
which describe a response of the system after perturbation 22.

20A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical processes on complex networks, 2008.
21B. Barzel and A.-L. Barabási, �Universality in network dynamics,� Nature Physics, 2013.
22B. Barzel, Y.-Y. Liu, and A.-L. Barabási, �Constructing minimal models for complex system dynamics,� Nature

Communications, 2015.
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Inference of human trails on the Web

Inference of human trails on the Web using Bayesian inference.
Hypotheses are speci�ed as Markov chains 23 24.

23P. Singer, D. Helic, B. Taraghi, and M. Strohmaier, �Detecting memory and structure in human navigation
patterns using markov chain models of varying order,� PLoS ONE, vol. 9, no. 7, 2014.
24P. Singer, D. Helic, A. Hotho, and M. Strohmaier, �Hyptrails: A bayesian approach for comparing hypotheses

about human trails on the web,� in Proceedings of the 24th International Conference on World Wide Web, 2015.
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Challenges ahead

1. Beyond maximum likelihood Development of model selection
procedures that rely on solid probabilistic foundations.

2. Nonparametric approach Emphasis on hierarchical models that can
be inferred in nonparametric way.

3. Dynamics rather than structure Emphasis on processes on networks.

4. Motivation Data-driven and problem-driven approach.
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