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Zagreb, Croatia
matija.piskorec@irb.hr

Abstract—In this review paper we give a short overview of
complex network theory and current state-of-the-art methods
for statistical inference on networks. This includes methods for
inference of network structure like communities, inference of
links from data on network dynamics, and inference of processes
on networks such as epidemics and social influence. Due to the
variety of approaches and methods, which would be impossible
to cover in detail, we are concentrating on those methods that
are based on solid statistical foundations.
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I. INTRODUCTION

Complex network theory has its roots in a branch of math-
ematics called graph theory, which developed through the last
two hundred years as a purely mathematical discipline. Histor-
ically, first applications of graph theory were in sociology for
analysis of social networks and computer science for analysis
of algorithms and data structures. In the last twenty years
complex network theory experienced a great surge of interest
from physics and computer science communities, borrowing
many methods from statistical physics and theory of complex
systems. This interest was facilitated by the increased avail-
ability of large amount of data on empirical networks such as
Internet, World Wide Web, online social networks, metabolic
and gene regulatory networks, and power grid networks. Po-
tential applications in these domains helped transform complex
network theory in a truly multidisciplinary field. Unfortunately,
it is often the case that many phenomena on networks are
explained by whatever model seems appropriate at a given
time because of practical issues such as computation time
or analytical tractability, instead of by validating proposed
theoretical models against empirical data. We argue that this
empirical validation is still crucial for the development of the
field, and that more emphasis should be put on developing
models which validate against empirical data. In the following
sections we give an overview of complex networks theory, then
present a framework for model selection based on Bayesian
inference, and finish with current state-of-the-art methods for
inference of models on networks.

Notes on terminology. There are several conventions on
naming fundamental concepts that we are describing in this
paper, depending on the community which uses them. Graph
theory developed as a branch of mathematics in the middle
of the 18th century, and has been adopted in sociology,
computer science and physics in the second half of the 20th

century. Due to the recent popularity of complex networks in
general and online social networks in particular parts of these
communities overlapped, leading to many inconsistencies in
terminology. For example, mathematics community uses ter-
minology graphs, vertices and edges while physics community
uses networks, nodes and connections respectively. When it
is important to highlight the ability of nodes to perform an
action its usual to refer to them as agents (in physics) or
actors (in sociology). When referring to the nodes in social
networks it is usual to be specific and refer to them either
as persons (in the case of real social networks) or users (in
the case of online social networks). Similarly, neighbors are
sometimes referred as friends in social networks. Network
panel data is sometimes used in sociological literature as
a synonym for temporal networks, and digraph is used for
directed network. Naming of processes on networks depends
largely on the context and the specificities of the process,
with names like diffusion, spreading, activation, rumor and
cascade being most common. In this paper we will mostly
use terminology from physics while trying to be as specific as
possible where necessary.

II. FUNDAMENTALS OF COMPLEX NETWORK THEORY

Most common way [1] to represent an unweighted, undi-
rected network is with a adjacency matrix A where element
Aij is 1 if there is a connection between nodes i and j,
and 0 otherwise. It is also common to assume that there
are no self-connection, that is Aii = 0. We denote the
total number of nodes in network with N . The number of
connections that a node i has is its degree ki, and the set of
all nodes to which it is connected is called its neighborhood.
The degree distribution Pk is a probability that a randomly
chosen node from a network has a degree k. Classical Erdos-
Reny random networks [2], where a connection between any
pair of nodes has a probability p to exist, in the limit of
a large number of nodes have a Poisson degree distribution
Pk = pke−p/k!. However, although it has many interesting
properties, this model does not reproduce degree distributions
of real networks, which are known to be heavy-tailed [3]. One
particular type of a heavy-tailed distribution is a power-law [4]
where Pk ∼ k−γ as k → ∞. Many generative models were
proposed for networks with power-law degree distribution,
including Price’s model [5] and Barabasi-Albert model [6],
that both depend in crucial way on preferential attachment
of new nodes to the nodes with high degree. We will review
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several methods of statistical inference of network evolution
models in section V.

Many real world networks have a small diameter - the
maximum length of the path that connects any two nodes in the
network. There is evidence that diameter tends to stabilize or
even shrink as the network grows larger over time [7]. Also,
the proportion of connections in comparison to nodes tend
to increase over time following a power law, a phenomenon
known as densification power law [7]. Other distinct features
of real networks are clustering on a microscale, community
structure on a mesoscale, and core-periphery structure on a
global scale. Global clustering coefficient measures a fraction
of triangles - triplets of nodes that are connected to each other.
It is much higher in real networks, especially in social net-
works, than Price’s model and Barabasi-Albert model predict
[1]. Local clustering coefficient [8] is defined for each partic-
ular node and it measures to what extent its neighborhood is
close to a clique - network where each node is connected
to each other. Communities in network [9] are groups of
nodes which are more densely connected to each other than
to other nodes in the network. The concept of a community is
ill defined, resulting in variety of different definitions which
result in different methods of their detection [10]. Choosing
one particular definition usually means implicitly assuming
a mechanism of community formation [11], so detecting
communities requires a form of model selection. We will
review methods for model selection regarding communities
in section V.

III. DYNAMICAL PROCESSES ON NETWORKS

In this section we will give a brief overview of the cur-
rent state of research on dynamical processes on networks,
concentrating on the contact processes which are used to
model biological and social contagions. We should note the
difference between more general research area which deals
with dynamical systems on networks, which covers dynamics
of network structure as well as processes on networks. It would
be impossible to comprehensibly cover the whole field, so
we direct interested reader to the relevant review literature of
dynamical systems on networks [12], as well as textbooks [13]
and popular review articles [14], [15]. However, we believe
that some methods used for inference of network structure,
especially those based on solid probabilistic foundations or
those that use data on dynamics (for example, from an
information cascade in online social networks), could be useful
for development of inference methods for dynamical processes
on networks, and so we review them in section V-A.

A. Biological contagions

The most common way to study biological contagions
in networks is through compartmental models [16] which
describe possible states (or “compartments”) of the nodes
and rules which govern transition between the states. The
most common compartmental models of biological contagion
are susceptible-infected (SI), susceptible-infected-susceptible
(SIS) and susceptible-infected-recovered (SIR), each defining

corresponding compartments and transition rules which can
be dependent on the number of infected neighbors (for ex-
ample, when transitioning from susceptible to infected) or
spontaneous (for example, when transitioning from infected
to recovered, which is also an absorbing state). These three
models are simple enough to be analytically tractable, with
many theoretical results, but in order to gain insight into real
epidemics one has to use more complicated compartmental
models which are designed to be as realistic as possible and
where parameters are estimated from real data [17], [18].

B. Social contagions

Methods for studying social contagions bear many similar-
ities to the methods for studying biological contagions, most
notably in the common usage of the phrase “contagion” for
something which is essentially a social influence. There are
decades of research originating from social science on social
contagions [19], [20] and inference of dynamics in social
networks [21], [22]. Bellow we briefly list some of the models
of social influence, approximately in chronological order [12]:
• Granovetter’s threshold model. [19] Also known as

linear threshold model. A node is activated if the sum
of influences from its neighbors exceed its own influence
threshold.

• Watts threshold model. [20] Where each node can
be in two states: inactive and active, and where each
node has a threshold drawn from a distribution. Node is
activated if the fraction of its activated neighbors exceeds
its threshold.

• Generalized model of contagion. [23] Introduces the
memory of past exposures which influences contagion,
and can be used for both biological and social conta-
gion. This model was motivated by the need to more
finely distinguish between two extreme cases: (i) where
successive contacts result in independent probability of
infection, for example like in compartmental models and
(ii) where there is a fixed threshold of contacts after which
probability of infection immediately changes.

• Centola-Macy model. [24] Similar to Watts model, but
uses absolute number of activated neighbors instead of
their fraction.

• Compartmental models. [25] Inspired by biological
contagions, compartmental models found their use in
social contagions. Most notably ignorant-spreader-stifler
(ISS) model which is similar to SIR model with a
difference that transmission to absorbing state (stifler) is
not spontaneous but depends on the presence of spreaders
or stiflers in the neighborhood of the node.

• Multiparametric model. [26] Where activation of a
node depends on the weighted linear combination of
three terms: (i) personal preference, (ii) an average of
its neighbors states and (iii) average of all nodes in the
network.

• Multi-stage complex contagions. [27] Where nodes can
be in one of three states: (0) inactive, where they exert
no influence, (1) active, where they excert some influence
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and (2) hyperactive, where they exert both regular and
some bonus influence.

• Synergistic model. [28] Where infectivity and/or suscep-
tibility of a node is dependent on the number of active
neighbors.

• Voter model. [29] Where each node can be in one of two
states, and at each time step one node is chosen uniformly
at random from the network and it adopts uniformly at
random a state from one of its neighbors.

Although there is research demonstrating that social conta-
gions could be modeled with biological contagions [30], recent
experimental evidence [31], [24] shows that social contagions
have functional dependencies that are more complex than
simple monotone dependency on the number of neighbors, as
is the case in many biological contagion models. For example,
instead of a person’s number of neighbors, the parameter that
drives the contagion is the number of connected components
in the person’s immediate neighborhood [31].

C. Influence and correlation in social networks

In order to measure social contagion, it is important to
distinguish between correlation effects that arise in the net-
work from the true influence (causation) from one person
to another. First steps in this direction was done by using
randomization strategies on network [32], which should di-
minish true influence and leave correlation intact. One form
of correlation is homophily, which is a tendency of similar
nodes to form connections between each other, and which is
often confounded with the social contagion [33], [34], [35].
Moreover, there are factors outside networks that have an
influence on contagion like political unrest [36], [37], natural
disasters [38] and external media [39]. Also, the topics of the
information themselves [40] can also be a significant driver
for the social contagion.

IV. MODEL SELECTION

The central goal of model selection is to select a model
or a class of models which generalizes best to unobserved
data [41]. In general this is not easy as the very features
of the model that improve its fitness on the observed data,
which is all we have during model selection, can actually
decrease its fitness on the unobserved data. In statistics and
machine learning community this is called bias/variance trade
off, where models that consistently perform poor on both
observed and unobserved data are considered to have high
bias, and models that perform excellent on observed and poor
on unobserved data are considered to have high variance.
The crucial factor that determines the model’s generalization
performance is its complexity, which is a measure of the
model’s degrees of freedom which allow it to fit many different
datasets. All model selection measures have to either explicitly
or implicitly account for the complexity of the model. In
section IV-B we will explain how properties of marginal
likelihood (also known as model evidence) implicitly account
for model’s complexity in Bayesian model selection. In section

IV-C we will describe several model selection measures which
account for this complexity explicitly.

A. Relation between model selection and other related con-
cepts

First we will comment on the subtle difference between two
related concepts - parameter estimation and model selection
[42]. Result of parameter estimation is always one specific
hypothesis, which we will also call point-hypothesis. In com-
parison, model selection gives us a set of hypothesis. For
example, a set of hypothesis could be a set of all kth degree
polynomials. One point-hypothesis from this set could be a
kth order polynomial with specific parameters. In general, we
could also define a model class as a set of models with similar
functional form, for example a model class of all polynomials
of a model class of all Markov chains of arbitrary order. Here
are several situations where model selection could prove more
suitable than parameter estimation [42]:
• When we want to select a “general theory”. For

example, when we want to select a model that performs
well under a variety of circumstances for which particular
parameters of a model may differ.

• Gaining insight. After which we can perform more
detailed experiments. This way we can investigate broad
class of models with low precision first and then make
more detailed analysis of this restricted class in order to
find an optimal model or do parameter estimation.

• Determining relevant variables. By investigating subset
of models which evaluates best under given data, and
which probably share common relevant variables.

• Prediction by weighted averaging. Where we first find
a model class, and then combine predictions made from
point-hypothesis belonging to this model class.

• Easier creation of model hierarchy. If our model
space has a hierarchical structure we can easily infer
hierarchical models by evaluating subsets of models and
composing them into hierarchy. This is not straightfor-
ward when doing parameter estimation.

Second, we will comment between the relation between
model selection and regularization. The two concepts are
essentially the same, as regularization also serves as a way to
restrict the class of possible models in order to reach an unique
solution to ill-posed problem or to prevent overfitting. From
the Bayesian view, many regularization techniques correspond
to imposing certain priors on the model’s parameters. The
distinction is mostly historical, although we must emphasize
that regularization is often used in much broader context that
includes parameter estimation along with model selection.

B. Bayesian model selection

In this section we will describe the problem of model
selection from a Bayesian perspective [43], [44], [41] which
gives probabilistically correct method of evaluating models
while relying only on two basic rules of probability: (i) sum
rule p(X) =

∑
Y p(X,Y ) and (ii) product rule p(X,Y ) =

p(Y |X)p(X), where X and Y are two random variables,
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p(X) is a probability of a random variable X , p(X,Y ) is
joint probability of random variables X and Y , and p(Y |X)
is a conditional probability of Y given X . Let us consider
a set of L different models {Mi} = {M1, . . . ,ML} where
each model Mi is defined as a probability distribution over
an observed data set D. Then we can evaluate the posterior
distribution through Bayes’s theorem:

p(Mi|D) =
p(D|Mi)p(Mi)

p(D)
=

p(D|Mi)p(Mi)∑
Mk∈{Mi} p(D|Mk)p(Mk)

(1)
Because the denominator is equal for all potential models
Mi, in model selection we can disregard it and reformulate
the problem as:

p(Mi|D) ∝ p(D|Mi)p(Mi) (2)

The prior p(Mi) expresses a prior probability of different
models before any data is observed. This probability could be
uniform, or it could be chosen based on some characteristics of
the models, for example their complexity [44]. Model evidence
or marginal likelihood p(D|Mi) expresses the preference
for different models given the data. It can be viewed as a
likelihood function over the space of the models in which the
parameters θ have been marginalized out [41]:

p(D|Mi) =

∫
p(D|θ,Mi)p(θ|Mi)dθ (3)

Marginalization of the likelihood function p(D|θ,Mi) over
the parameter space has an implicit effect of restricting the
complexity of the model, and in this way preventing the
overfitting of the model to the data [41]. Simple models
concentrate their probability mass (in the case of discrete
models, otherwise we should refer to the probability density)
to the smaller number of datasets than complex models, but
give each of them larger probability. This ensures that complex
models will be penalized if data can indeed be explained by
a more simple model [45].

The ratio of model evidences p(D|Mi)/p(D|Mj) for two
modelsMi andMj is called Bayes factor [46]. We can show
that Bayes factor is a ratio of posterior and prior odds [44]:

p(Mi|D)

p(Mj |D)︸ ︷︷ ︸
posterior odds

=
p(D|Mi)

p(D|Mj)︸ ︷︷ ︸
Bayes factor

p(Mi)

p(Mj)︸ ︷︷ ︸
prior odds

(4)

In another words, Bayes factor quantifies the degree to
which the newly observed data changed the evidence towards
one or another model.

In the end, we should highlight the role of model evidence
in evaluating posterior distribution over parameters for a
particular model Mi:

p(θ|D,Mi) =
p(D|θ,Mi)p(θ|Mi)

p(D|Mi)
(5)

In this case the model evidence appears in the denominator
and it acts as a normalizing constant.

C. Model selection criteria
It is hard to perform model selection in fully Bayesian

treatment in the way described above because it requires
integration of marginal likelihoods over all of the parameter
space, which is often infeasible. Sometimes the maximum of
the likelihood function is used as a first approximation to the
model evidence, which is justified only if likelihood function
is sharply peaked over maximum likelihood parameters. This
is not true in general because it does not account for the shape
of the likelihood function which is highly dependent on the
functional form and the number of parameters of the model
we are investigating. There are many approximate model
selection criteria which use the maximum value of likelihood
function in addition to different complexity terms in order
to approximate model evidence. The most commonly used
ones are Bayesian Information Criterion (BIC) [47], Akaike
Information Criterion (AIC) [48] and Rissanen’s Stochastic
Complexity (SC) [49]:

AIC = −2 ln f(y|θ̂) + 2k

BIC = −2 ln f(y|θ̂) + k lnN

SC = − ln f(y|θ̂) +
k

2
lnN

(6)

Where y = (y1, . . . , yN ) is a data sample of size N ,
ln f(y|θ̂) is the logarithm likelihood of the maximum like-
lihood parameters θ̂. Note that all of these measures feature
first term which evaluates goodness-of-fit and the second term
which evaluates model complexity, which depends only on
the number of parameters of the model k and the number of
observations N . When two models have the same number of
parameters their comparison reduces to the generalized likeli-
hood ratio testing [42]. But two different models could have
the same number of parameters and still differ in complexity
due to their functional form! To demonstrate this look at the
following two models [50], [42]:

y = axb + error (Stevens’ model)
y = a ln(x+ b) + error (Fechner’s model)

(7)

Although both models have the same number of parameters,
Steven’s model is more complex (in terms of the number of
distributions it can fit, not the number of parameters), and it
will always give a better fit to the data, making it more likely
that it will fit noise along with data. So AIC and BIC criteria
will consider Steven’s model more general, and give it a higher
score even in the case when data is generated from Fencher’s
model! So we need an additional complexity term that will
properly account for the complexity of Steven’s model that
is due to the functional form. A measure of model selection
which captures this is Minimum Description Length (MDL)
[51], [52], [42]:

MDL = − ln f(y|θ̂)︸ ︷︷ ︸
fitness

+
k

2
ln

(
N

2π

)
+ ln

∫
dθ
√

detI(θ)︸ ︷︷ ︸
complexity of a model family f

(8)
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Where Iij(θ) is the Fisher Information Matrix defined as
the expectation value Iij(θ) = −Eθ[∂2 ln f(y|θ)/∂θi∂θj ]
evaluated in the distribution indexed with θ with a sample size
of 1. MDL is the length in bits of the shortest possible code
which describes the data generated by a model lying within
the family f . MDL model selection is essentially the same as
performing Bayes factor analysis with Jeffrey’s prior [42].

D. Other model selection criteria

We will briefly review several other model selection criteria
and their relation to the ones we described above.

Structural risk minimization (SRM) [53] uses similar trade-
offs for model fitness (or “risk”) and model complexity for
model selection. It requires the definition of a nested space of
models ordered by increasing complexity which is measured
by Vapnik-Chervonenkis dimension (VC-dimension). In com-
parison to the above measures, the term for complexity is not
in the same units as term for fitness, and so their combination
is not straightforward [42]. SRM imposes no requirements on
the type of models, as long as it is possible to calculate VC-
dimension for them, and so the bounds it provides are very
conservative, and can be considered as the worst-case estimate
[41].

False Discovery Rate (FDR) [54] developed as a less conser-
vative alternative for Bonferoni measure for multiple hypoth-
esis testing. It works by controlling the expected proportion
of rejected null-hypotheses which were in fact correct (“false
discoveries”). In comparison to the measures above, which
are based on Bayesian analysis, FDR is based on frequentist
approach to statistics and it is useful only when there is a need
to select one particular point-hypothesis out of a finite set of
hypotheses.

Cross-validation (CV) [55] is a method where a model
is repeatedly learned and tested on two disjoint subsets of
the observed data, in hope to select for a model that will
have good predictive accuracy on unobserved data. In this
way model’s complexity is incorporated implicitly because
models that overfit on the training subset will be penalized by
evaluation on the test subset. Under certain conditions, leave-
one-out cross-validation (where there is only one sample in
test dataset) asymptotically selects the same model as Akaike
Information Criterion [56].

V. STATISTICAL INFERENCE IN NETWORKS

Over the years many methods for inference of network
models were developed, many of which use some form of
maximum likelihood estimation mentioned in section IV.
Unfortunately, although evaluation of network models often
employs statistical techniques in order to compare predictions
of a model with empirical data, what is usually compared are
only the aggregated features of the modeled and empirical
networks like degree distribution or clustering coefficient in
case of structure [57], or response correlations in case of
dynamics [58]. Comparing only the aggregate features reduces
the discriminative power of model validation [4], but is often
practiced because it requires less computational resources and

allows the usage of standard statistical methods. The advantage
of using maximum likelihood for model selection is that
different models can be compared directly in probabilistically
unified way, rather than through the agreement of their pre-
dictions with a selected subset of many possible aggregated
features [59].

There are several issues which have to be accounted for
in order to perform statistical inference of network structure
directly, rather than just the statistical comparison of their
aggregated features [60], [61]:

• Granularity of observations. In comparison to standard
statistical problems, a realization of a network gener-
ated by a model is considered as a single observation
instead of a set of independent, identically distributed
observations. This prevents us of using model selection
methods which depend on partitioning the data set into in-
dependent training and test sets, such as cross-validation,
because this would be impossible to do on networks. In
reality this is not such a problem because a likelihood
function anyway measures how a model predicts the
entire data set, in our case the observed network. So
instead of cross-validation we can use model selection
methods which evaluate model fitness and model com-
plexity without the use of independent test set, some of
which we described in section IV-B.

• Node correspondence. This problem stems from the fact
that a particular labeling of the nodes in network should
not affect the likelihood function, as isomorphic networks
should have the same likelihood of being generated by
any particular model. So in order to calculate a likelihood
we have to consider each of N ! possible permutations
of node labellings, which is computationally infeasible.
Estimation of likelihoods could be made much more
efficient by using appropriate sampling strategies, for
example Markov Chain Monte Carlo (MCMC) [60].

• Likelihood estimation. Even without the node corre-
spondence problem,in order to calculate the likelihood
that a particular model generated the observed network
we still need to evaluate the probability of each of the N2

possible edges in the observed network. Again, estimation
of likelihoods could be made much more efficient by
using appropriate sampling strategies like MCMC.

In the following two subsections we will review some of the
methods used for inference of network structure (section V-A)
and inference of processes on networks (section V-B). As we
already mentioned in section III, we decided to distinguish
between models which implicitly or explicitly use network
dynamics for inference of network structure and models of
processes on networks. Former include, for example, network
growth models, models of community formation, and models
of network structure inferred from dynamic data such as
information cascades in online social networks. Later include,
for example, epidemic and birth-death processes, biochemical
and regulatory dynamics, human trails on the Web such as
Web navigation and sequences of reviews.
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A. Inference of network structure

Historically, sociological studies on human social networks
predate most of the research on complex network structure
and dynamics [62]. They are more concerned with modeling
the dynamics of individual nodes, rather than modeling dy-
namics of a network on a global scale. For example, actor
models are used to model the conditions under which nodes
change their outgoing connections [21]. There are efficient
maximum likelihood methods which are able to infer actor
models from empirical data on network dynamics, and which
incorporate many sociologically relevant features such as
transitive triplets, reciprocated ties, indirect ties and persistent
reciprocity [22].

Network growth models are concerned with the evolution
and properties of network’s global structure, and the problem
of their inference gained a lot of attention in the research
community [60], [59], [61], [63]. One of the first statistically
principled approaches was to recognize that a growth model
is actually a probability distribution on a space of all possible
networks and to use maximum likelihood estimation to obtain
most probable model giving the data on network growth [60].
This was also the first approach that used efficient Markov
Chain Monte Carlo algorithm for the estimation of likelihoods.
Maximum likelihood was also used to design complex models
of network growth that are composed out of simpler micro-
scopic principles [59]. We can reduce the computational cost
of likelihood estimations by using less data, which is usually
discriminative enough for model selection as compared to
parameter estimation [63]. Also, supervised machine learning
models which used network’s aggregated features were used
to discriminate between networks generated with different
generative models, and to estimate their parameters [64].

Two network models which are often used for the represen-
tation of network structure, and for which efficient inference
methods were developed are Kronecker graphs [61] and block
models [65].

Kronecker graphs [61] are recursive models of networks that
are expressive enough to model real network and to reproduce
most of their properties. They rely on the kronecker product
of adjacency matrices A and B which is defined as:

A⊗B =

a1,1B · · · a1,nB
...

. . .
...

am,1B · · · am,nB

 (9)

Starting with an initiator graph K1 and by successively
applying kronecker product Kk

1 = K1⊗· · ·⊗ we can generate
self-similar network of arbitrary size. The Kronecker graphs
have a multinomial distribution for in and out degrees of the
nodes, which for some choices of initiator graphs behaves like
a power-law distribution. Also, they follow the densification
power law.

Another suitable representation of network structure are
block models [65]. A block model that contains k blocks (or
communities) is a k × k matrix M where each element Mij

gives a probability that a node from block ki is connected to a

node from block kj . Erdös-Reny networks are a special case
of block models where there is only one block. Minimum
description length can be used in blockmodel inference as
a complexity measure [66]. It is possible to infer block
models from data in a nonparametric way, without predefining
number of blocks [67]. Also, there are efficient Monte Carlo
methods for inference of block models that optimize entropy
rather than log-likelihood, and which can perform inference
in a hierarchical way where every level serves as a prior
information for the lower level [11].

Sometimes the information on network structure is lacking
and the information on dynamics on network is used to infer it.
For example, CoNNIe [68], NetRate [69], NetInf [70] and In-
foPath [71] algorithms use generative probabilistic models for
inferring network structure from information diffusion data.
They all aim to find a spreading cascade which maximizes the
likelihood of the observed data [72]. For this they use different
optimization methods - convex programming for CoNNIe and
NetRate, submodular function optimization for NetInf and
stochastic gradients for InfoPath. Only InfoPath is able to
provide an online estimate in case when network is changing
over time.

B. Inference of processes on networks

In comparison to inference of network structure, inference
of processes on networks still lacks a suitable representation
which would allow inference of a broad range of dynamical
models using an unified probabilistic framework [73]. In case
of binary-state dynamics, where each node can occupy one
of two states, we can use infection rate Fk,m and recovery
rate Rk,m functions which depend only on the degree of node
and the number of its neighbors, and which can describe
many binary-state processes like SI and SIS models, Bass
and Kirman models and voter models. These rate functions
can be used to derive a master equation for describing time
evolutions of the fractions of nodes in each of the states [74].
Unfortunately, currently there are no proposed methods for
inference of these functions from data.

Another suitable representation is a general network dynam-
ics equation [13] given in the form:

dxi
dt

= M0(xi(t)) +

N∑
j=1

AijM1(xi(t))M2(xj(t)) (10)

where xi is an activity of node i, A is an adjacency
matrix of the network, and nonlinear functions M0(x), M1(x),
M2(x) define a space of dynamical models which has to
be inferred. Examples of dynamical processes which can be
represented with this equation are (i) epidemic processes,
where xi represents probability of infection of a node i, (ii)
biochemical dynamics, where xi represents concentration of
a reactant i, (iii) birth-death processes, where xi represents
population at site i and (iv) regulatory dynamics, where xi
represents expression level of a gene i [73]. We can expand
each function M(x) into Hahn series:
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M(x) =

∞∑
n=0

An(x0 − x)Π(n) (11)

which is a generalization of the Taylor’s expansion that
includes both negative and real powers Π(n). The leading term
of this expansion, which corresponds to power Π(0), gives first
approximation to the functional form of the dynamic process.
It can be inferred using aggregated features of the transient
response xi(t), which describes a response of the system after
perturbation, and the response matrix Gij , in this way finding
a minimal model for the dynamical process on network [58].
This minimal model describes only the functional form of the
model, and does not rely on model parameters An.

Human navigation on the Web can be modeled by Markov
chain model, where Web content like Web sites, multimedia
and reviews are states and sequences (or “trails”) from one
content to another are governed by transition probabilities
[75]. There are efficient Bayesian inference methods which
allow selection between prespecified hypotheses expressed as
Markov chains from empirical data [76], [77].

There has been much research on the prediction of infor-
mation cascades in networks [72] given past diffusion traces.
First class of methods uses explicit information on network
structure. Linear threshold model [19] can be fitted to data
using gradient ascent method [78], although this can not
reproduce realistic temporal dynamics [72]. AsIC and AsLT
are asynchronous versions of independent cascades model and
linear threshold models, and they can be inferred from data
using a maximum likelihood estimation [79]. T-BaSIC model
(Time-Based Asynchronous Independent Cascades) uses logis-
tic regression to estimate functions depending on time which
serve as model parameters [80]. Second class of methods do
not assume existence of specific graph structure. For example,
a SIS model can be fitted to data under assumptions that all
nodes have the same probability to adopt the information and
that they become susceptible at the next time step [81]. Linear
Influence Model relaxes this assumptions, and it allows infer-
ence individual influence functions for each node separately in
a non-parametric way by solving a non-negative least squares
problem using the Reflective Newton Method [82]. Partial
Differential Equation based model can predict topological and
temporal dynamics of an information injected in the network
by a given node, and its parameters can be estimated using
the Cubic Spline Interpolation method [83].
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