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Chapter 1

Introduction

Multiresolution analysis and wavelets have gained considerable research at-
tention in the last two and a half decades. The main driving force were
probably the promising first applications of the new methods in wide range
of science and technology. In the middle of that period it became clear that
traditional definition on simple one and two-dimensional domains isn’t eas-
ily extensible to the more general settings - for example, on the 2-manifolds
of arbitrary topological type and their discrete counterparts triangulated
meshes that were at that time widely used in computer graphics.

The second generation wavelets came at the scene, inspired mostly by the
ground breaking work of Lounsbery et al. [22, 23] and the invention of the
spherical wavelets by Schröder and Sweldens [31, 32]. By exploiting the
properties of subdivision surfaces they allowed the usual signal processing
techniques to be employed in the setting of surfaces and functions defined on
the surfaces. The resulting algorithms are fast and efficient, often running
in linear time.

One drawback of the above mentioned approaches is that they depend heav-
ily on the subdivision connectivity properties of the meshes, which effectively
means that all meshes on which they operate need to have semi-regular
structure obtained by iteratively subdividing some initial base mesh. Unfor-
tunately, this is rarely a case one encounters with the real-world meshes. The
problem of reconfiguring the topology of the mesh vertices without influenc-
ing (up to a tolerance factor) the geometry of the mesh is called remeshing
and considerable amount of research is devoted to it. For an excellent survey
see [1].
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Lounsbery et al. practically started the field by themselves so they relied on
their own custom method described by Eck et al. in [12]. The method first
parametrize the original model onto a set of base triangular domains and
then recursively subdivides the base domain to gain surface with subdivision
connectivity. Schröder and Sweldens had somehow easier task because they
weren’t interested in surfaces themselves but only in the functions defined
on one particular surface - the sphere. By recursively subdividing some
predetermined base polyhedron mesh (they used icosahedron) and projecting
the newly created vertices to the unit radius they obtained the suitable
surface for their purposes. Of course, their method can be used for the
representation of the more general surfaces, although the remeshing step is
unavoidable in that case.

If one doesn’t have the subdivision surface to start with, the multiresolution
analysis on irregularly sampled point sets is also possible, as demonstrated
by Daubechies et al. [7], Guskov et al. [16] and Valette and Prost [33]. The
advantage of those methods is that they keep initial topology of the mesh
intact so a completely accurate reconstruction of the initial mesh is possible.
This is also the approach taken during research for this thesis.

The purpose of this thesis is to investigate the possibilities of multiresolu-
tion analysis and wavelet representation for the analysis of macromolecular
structures and molecular surfaces in particular.

Chapter 2 gives an overview of the various types of surfaces and surface
properties that can be defined given the detailed structural information of
the molecule. Chapter 3 explains the theoretical background of the mul-
tiresolution analysis that can be applied to both semi-regular and irregular
setting. Subdivision surfaces, important in several aspets to both of these
settings, are explained in chapter 4. Chapter 5 describes the implementa-
tion of the method for irregular multiresolution analysis that was used in
this thesis for the analysis of macromolecular surfaces. Finally, chapter 6
demonstrates the results of testing the simple signal processing operations
on macromolecular surfaces.



Chapter 2

Macromolecular structures

In the language of protein science the most widely used macromolecular
structures are the primary, secondary, tertiary and quaternary structure. In
the remaining of the thesis we are concerned with macromolecular surfaces
that are defined by a finite number of vertices and their connectivity and
form a triangulated embedding in 3D space. We will call such representation
a triangulated mesh.

We will further suppose that molecular surface is topologically equivalent to
sphere i.e. has no holes or boundaries, although some of the analysis that
will be presented is valid for surfaces that don’t posses these properties.

Figure 2.1: Representation of molecular structures. The stick representation on
the left allows the dihedral angles between individual atoms to be seen. The cartoon
representation in the middle reveals the details about the secondary structure of
the two chains that compose the molecule. Finally, the surface representation on
the right allows as to view the solvent-accessible surface of the protein.
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Figure 2.2: Surface of the molecule represented as a triangulated mesh.

2.1 Types of surfaces

One of the most common ways to define the protein surface is to use the
envelope obtained by walking a water-radius (1.4 Å) probe along its atoms.
Surface defined in such way is called a solvent accessible surface. All that
is required for a procedure are coordinates of each atom and their radii.
This data is easily obtained by parsing through the PDB files that store
information on each atom in macromolecular complex. The most reliable
repository of PDB files is Worldwide Protein Data Bank [2].

Figure 2.3: Solvent accessible surface for various radius of water-probe. From left
to right the radius is 1 Å, 2 Å, 3 Å and 4 Å. Note how increasing the radius of
probe corrects small holes and smooths the surface geometry.

Changing the radius of the water-probe affects the geometry of obtained sur-
face - large probes can not fit into the small concave regions of the molecule
so they tend to fill small holes and smooth the surface. Usually, a fixed
1.4 Å radius probe is suitable for most applications, although sometimes
there are benefits of using probe with variable radius. For example, Bhat
et al. [3] demonstrated that by changing the radius of the probe according
to the hydrophobicity of the surface atoms one can easily account for the
hydrophobic character of the surface by modifying its geometry.

We used a fixed radius probe with radius chosen appropriately large so that
the surface doesn’t have small holes. The surface is generated with PyMOL
Molecular Viewer [9] and exported in wavefront (.obj) format so that it can
be easily imported in other applications. A short program written in Python
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is used to convert the data into a text format suitable for import by Matlab
.

Figure 2.4: Comparison of electron density map and solvent accessible surface
of 1ay7 complex. By choosing the appropriate isosurface for the electron density
map one can approximate the molecular surface of the protein, though extraction
of continuous smooth surface could be non-trivial.

Alternately, one can use the electron density maps or some other volume-
based data to gain insight into the overall shape of the surface. As can
be seen from the picture 2.4 it can be quite complicated to extract smooth
continuous surface from that kind of representation, although recently Giard
and MacQ [14] demonstrated fast and parametrizable algorithm that gives
good quality meshes by filtering electron density maps.

2.2 Surface properties

In contras to surfaces themselves, there is also a need to represent functions
on the surfaces. In context of macromolecules these functions represent
various surface properties 1 that are of interest. The most commonly used
are hydrophobicity and electrostatic potential.

2.2.1 Hydrophobicity and electrostatic potential

Both hydrophobicity and electrostatic potential are defined by the proxim-
ity of various molecular properties that aren’t tied directly to the surface -

1Of course, as there is no way to uniquely define the ”surface” of the molecule the
notion ”surface properties” should also be taken with care. In fact, the definition or even
existence of them is not really that relevant for our purposes.
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hydrophobicity by the proximity of hydrophobic groups to the molecule sur-
face, electrostatic potential by the distribution of charges near the surface.
Both are very relevant to the way molecules interact with an environment
and each other.

Figure 2.5: Mapping surface electrostatics to 1ppe complex. Left is the original
surface, middle shows overlap between one of the isosurfaces of the generated elec-
trostatic map and on the right is the electrostatics mapped onto a surface. This
electrostatic potential is calculated in Pymol.

Figure 2.5 shows an example of mapping electrostatic potential to the molecule
surface. First, the electrostatic potential map is calculated according to the
constituent atoms of the molecule. Then it is visualized by isosurface in
wireframe representation and superimposed on the original surface. Note
that the isosurface corresponds nicely with the regions of the surface with
negative potential (blue regions). Electrostatic potential map and isosur-
face is calculated in Pymol. Unfortunately, because of the short cut-offs,
truncations and lack of solvent ”screening” these computed potentials are
only qualitatively useful. The further difficulty is that, in contrast to the
molecular surface itself, there is no way to export these values out of the
Pymol for the use in some other program.

2.2.2 Curvature of the surface

In contrast to hydrophobicity and electrostatic potential, curvature of the
surface is inherent property of the surface itself. On surfaces defined as
continuous 2-manifolds the usual measure of the curvature is the Laplace-
Beltrami operator that generalizes the Laplace gradient operator. As our
surfaces are defined as triangulated meshes we will need discrete approxi-
mation. For the purposes of this thesis we use discrete mean curvature as
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an approximation. We define it as in [26]:

∇pareaMh =
1
2

∑
j

(cotαj + cotβj)(p− pj) (2.1)

Angles αj and βj are defined as in figure 2.6 (right). Figure also shows
representation of discrete mean curvature as a vector over the polyhedral
surface (left).

Figure 2.6: Discrete mean curvature is defined as a vector over the polyhedral
surface (left). Angles used for computation (right). Figure reproduced from [5].

Figure 2.7 shows the magnitude of discrete mean curvature vector mapped
onto a surface of 2wfv protein. Highly detailed parts of the surface are clearly
visible on the curvature map and they correspond to the high resolution parts
of the multiresolution representation of the surface.

2.3 Representing geometry as function

It is probably worth to clarify at this point the difference between geometry
of triangulated surface and its topology. The geometry is defined solely by
the position of the vertices that compose the mesh.

On the other hand, the topology is defined by the mutual connections be-
tween the vertices. Its easy to imagine a mesh that has all of its vertices
positioned at the same location in space (degenerate geometry), but never-
theless having rich topological structure.

This allows us to completely change one of them and still have other pre-
served. For example, changing the topology of the mesh without influencing
(up to an error tolerance) the geometry is called remeshing.
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Figure 2.7: Discrete mean curvature plotted on the 2wfv protein surface. Highly
detailed parts of the surface are clearly visible on the curvature map.

It also allows as to define geometry as a surface property and to map it to
some other surface. Because the points that define the geometry are three-
dimensional we have three separate functions x(u, v), y(u, v) and z(u, v) for
each coordinate x, y and z. Here u and v are local coordinates defined on
the surface on which we parametrized the initial surface. The problem of
finding suitable set of (u, v) coordinates for each point on the initial surface
is called parametrization and it isn’t easy in general. For an excellent survey
see [13].

Figure 2.8 shows the results of mapping the geometry of random surface to
the sphere. Only the z(u, v) part is shown.

Figure 2.8: Representing geometry as a function on sphere. From left to right:
original surface, surface with mapped values for the z coordinate, mapping of the
function z(u, v) to the sphere, comparison sphere with values for its z coordinate.
Note the extreme peaks on top of the model that extend into the z-direction and
that are easily recognizable on the z(u, v) mapped to the sphere. For comparison,
the peak on the lower left of the model extends in direction orthogonal to the z-axis
and is not recognizable at all on the z(u, v).



Chapter 3

Multiresolution analysis

The basic idea behind multiresolution analysis is to decompose a function
into low and high resolution part in such a way that the original function
can be reconstructed from them. The high resolution part can be efficiently
represented as a linear combination of wavelet functions ψj

i , so the whole
method is often simply referred as the wavelet transform. If we further
decompose the low resolution part up to some definite (base) level we can
discard all of the low resolution parts from higher levels and reconstruct
the complete signal just by recursively adding the wavelet functions to the
base signal. Because the shape of each wavelet function on different level is
known in advance, the whole signal is actually represented with a series of
wavelet coefficients.

Figure 3.1: Wavelet decomposition of triangulated surface. The surface is de-
composed into a sequence of low resolution approximations and a set of wavelet
functions φj . Later, the low resolution approximations can be discarded and the
original surface can be reconstructed solely by the lowest resolution mesh and a set
of wavelet functions.
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There are few applications that can benefit from the decomposition defined
above:

Signal compression: Not all wavelet functions are needed for the recon-
struction of original signal. Achieving a reasonably good approxima-
tion is possible with only a subset of high resolution details, so a signal
can be straightforwardly compressed.

Multiresolution editing: By changing the wavelet functions that corre-
spond to the different levels of detail one can edit the original signal
at various levels of resolution.

Signal processing: Because high resolution details are often associated
with the high frequencies in the original signal, it is possible to achieve
approximation of the low-pass, high-pass or band-pass filter by selec-
tively discarding wavelet functions on various levels of resolution.

Optimization: The multiple levels of approximation of original signal can
offer a sort of multigrid techniques for optimization.

Traditionally, wavelets are defined on a R1 or R2 where all wavelets functions
ψj

i are simple translates and dilates of one particular function, the mother
wavelet ψ. These are the first generation wavelets

On the other hand, in this thesis we will be concerned with multiresolution
analysis that can be applied in the more general setting of surfaces - 2-
dimensional manifolds of arbitrary topological type. These are the second
generation wavelets. Great amount of research in the last two decades is
dedicated to the definition of second generation wavelets that have as much
good properties as their more traditional counterparts, most important being
the fast (near linear time) algorithms, smoothness, localization and ability
to characterize various functional spaces of interest.

There are two main types of multiresolution analysis when applied in the
context of surfaces: those which operate on semi-regular setting and those
which operate on irregular setting. The first ones rely heavily on the prop-
erties of subdivision surfaces that will be explained in chapter 4. The second
ones don’t require semi-regular setting and can work on surfaces composed
of triangles with arbitrary connectivity.

In the following sections we will provide theoretical background for the mul-
tiresolution analysis on surfaces that applies to both semi-regular and irreg-
ular setting. The chapter 5 deals exclusively with multiresolution analysis
on irregular setting.
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3.1 Theoretical background

Now we will elaborate basic concepts of multiresolution analysis as described
in [22, 23]. There are two basic ingredients necessary for the multiresolution
analysis: an infinite sequence of nested linear function spaces V 0 ⊂ V 1 ⊂
V 2 . . ., and an inner product 〈f, g〉 defined on a pair of functions f, g ∈ V j ,
for some j < inf.

Function spaces V j represent our signal on various levels of resolution, with
j = 0 being the level with the lowest resolution. The inner product is
necessary to define orthogonal complement spaces W j as:

W j = {f ∈ V j+1|〈f, g〉 = 0, g ∈ V j}

.

Now we can write any function f j+1 ∈ V j+1 as an orthogonal decomposition

f j+1 = f j + hj

where f j ∈ V j is our low resolution part and hj ∈W j is the high resolution
part of the original function f j+1.

The bases of V j are called the scaling functions and are usually written as
φj

i , and the bases of W j are called wavelets and are usually written as ψj
i .

Hence, every function f j on the resolution level j can be represented as a
linear combination of scaling functions φj

i :

f j =
∑

i

vj
iφ

j
i (3.1)

The original wavelets described by Daubichies [8] and Mallat [24] are fully
orthogonal meaning that every wavelet is orthogonal to every other wavelet.
Full orthogonality is in most cases hard or even impossible to achieve, so it
is more convenient to define semiorthogonal wavelets that require orthog-
onality only between wavelets at different levels. However, sometimes its
necessary to drop the notion of orthogonality altogether and to require or-
thogonality just between some of the wavelets at different levels. Usually it
will be the ones that are spatially close to each other. This least restrictive
form of wavelets are called biorthogonal wavelets.

3.1.1 Refinement equation

We will now give more precise definition of the nested linear spaces. In
particular, we are interested in how, given the highest resolution function
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from V j , to obtain the lower resolution function from V j−1. The equation 3.1
tells us that every function on level j can be written as a linear combination
of the scaling functions on the level j. The question is now redefined as: How
to obtain the scaling functions from the level j−1 given the scaling functions
on the level j? It will most certainly be some form of linear combination,
but unfortunately nothing more can be said for the general case.

When we have spatially invariant domain it turns out that simple translation
and dilation of the original scaling function is enough to define the scaling
functions on the coarser level. In that case all scaling functions on the
coarser level can be obtained by a simple refinement equation:

φ(x) =
∑

i

piφ(2x− 1) (3.2)

Unfortunately, as we are dealing with surfaces whose domain does not satisfy
spacial invariance we can not rely on the refinement equation for the con-
struction of scaling function. Instead, we will use properties of subdivision
surfaces to define refinement on the surface.



Chapter 4

Subdivision surfaces

Subdivision was originaly technique for building smooth functions starting
from a coarse description. It is closely connected with the upsampling pro-
cedure where non-existent signal values are approximated with the help of
nearby values. In the context of surfaces the theoretical work traces back
to 1978 when papers by Doo and Sabin [10, 11] and Catmull and Clark [6]
developed subdivision schemes for defining tangent-plane smooth surfaces.

They are important for the multiresolution analysis because they allow the
definition of refinability in the setting of surfaces. For example, Lounsbery
et al. [23] demonstrates that if V j is a matrix whose i-th row consists
of the x, y and z coordinates of vertex i then subdivision procedure can
be characterized with matrix P j in order to obtain the subdivided surface
V j+1:

V j+1 = P jV j (4.1)

As we would expect from a subdivision procedure, matrix P j depends only
on the connectivity of vertices in V j , not their actual positions. More im-
portant, the same matrix P j can be used to obtain the scaling functions on
lower resolution from the scaling functions on the finer resolution:

Φj(x) = Φj+1(x)P j (4.2)

where Φj(x) defines the row matrix of scaling functions φj
i (x). This equation

establishes refinability because it states that each of the scaling function
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φj
i (x) can be written as a linear combination of scaling functions φj+1

i .

4.1 Types of subdivision

The subdivision procedures are traditionally divided into two categories:
primal and dual. A primal subdivision procedure uses a refinement proce-
dure to refine the faces of the mesh into a subfaces. The dual subdivision
procedures do exactly the same but additionally take the dual 1 of the re-
sulting mesh. In the case of primal subdivision procedures that operate on
triangular faces each triangular face is divided into four faces that are de-
fined by the initial vertices and the vertices added in the middle of each edge.
This first step is called splitting and it is the same in all primal subdivision
procedures.

Figure 4.1: Polyhedral subdivision of the icosahedron. The new vertices are
simply located at the middle of the edges.

Figure 4.2: Butterfly subdivision of the icosahedron.

The second step is averaging and it is here where primal subdivision pro-
cedures differ. For example, figures 4.1 and 4.2 show result of subdividing

1The dual of the mesh is obtained by positioning the vertices of the dual mesh on the
center of each face of the original mesh. Each vertex is then connected with the one that
belongs to the neighbouring face in the original mesh.
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the initial icosahedron mesh with polyhedral and butterfly subdivision proce-
dure respectively. Both are examples of interpolating subdivision procedures
because they don’t change the positions of old vertices.

The polyhedral procedure doesn’t do any averaging and simply positions new
vertices exactly at the middle of each edge. On the other hand, butterfly
procedure calculates the position of the new vertex according to the eight-
point stencil illustrated on figure 4.3.

Figure 4.3: Stencil and corresponding weights for the butterfly subdivision pro-
cedure.

Polyhedral and butterfly procedure was used by Lounsbery et al. [23] in their
multiresolution analysis that runs in linear time. They note that using more
complicated procedures such as Loop or Catmull and Clark procedures leads
to much higher time complexity. Butterfly stencil was used by Schröder and
Sweldens [31, 32] for their spherical wavelets, although they experimented
with other as well.

Alternative way of categorizing subdivision procedures became important
after the advent of multiresolution analysis on irregular meshes. According
to it, each subdivision procedure can be uniform, semi-uniform or non-
uniform depending on the weights used in subdivision procedures. The
butterfly and polyhedral procedures mentioned above belong to the semi-
uniform category because the weights depend only on the local connectivity
of triangulation.

Non-uniform subdivisions are especially important for the multiresolution
analysis on irregular meshes because they allow the smooth approximations
of any number of irregularly sampled vertices. The weights used in that case
depend on the local connectivity and geometry of the mesh. The usual sub-
division procedure in non-uniform setting begins by adding some number of
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vertices and connecting them to the vertices of original mesh. It then calcu-
lates their positions according to the connectivity and geometry of nearby
vertices. The operators used for calculation of new positions are often called
relaxation operators because they try to find smooth approximation of finite
set of vertices. Various relaxation operators can be used for smoothing -
for example, Guskov et al. in [15, 16] used non-uniform relaxation operator
that minimizes second-differences. In chapter 5 we will use a similar opera-
tor described by Roy et al. in [29] to define the non-uniform subdivision on
irregular mesh.

Figure 4.4: Comparison of semi-uniform (middle) and non-uniform (right)
smoothing of the original triangular mesh (left). The semi-uniform subdivision
tends to average the lengths of the edges distorting the geometry in the process. In
contrast, non-uniform smoothing based on relaxation operators smooths only the
geometry of the surface while keeping the original triangle shapes. Figure repro-
duced from [16].

If one wish just to obtain smooth surfaces starting from an irregularly con-
nected mesh, a modified version of traditional butterfly and loop subdivision
procedures can be used. For example, Zorin et al. in [34] describe one such
modification of butterfly subdivision procedure that can be used with good
results.

4.2 Regularity of the mesh

Whether or not certain types of multiresolution analysis can be performed
depends on the regularity of the mesh. All meshes fall in one distinct cate-
gory: regular, semi-regular and irregular meshes. The figure 4.5 illustrates
the three types on 2D plane.

On regular meshes all vertices have exactly six neighbours. These are appro-
priately called regular vertices. Connectivity is implicit while compactness
and regularity of data structure improves performance of many algorithms.
On semi-regular meshes majority of vertices are regular, but there are also
some extraordinary vertices that have more or less than six neighbours.
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Because they are more easily obtained than regular meshes, semi-regular
meshes are the most popular choice for doing multiresolution analysis that
requires subdivision surface. In that case the lowest resolution (base) mesh
consists mostly of extraordinary vertices and his shape usually greatly in-
fluences the outcome of the analysis.

Finally, irregular meshes consist of vertices of any degree. This is the most
common type of regularity and the one usually encountered in meshes that
have not been processed by some remeshing procedure. The multiresolution
analysis is still possible - for example, Daubechies et al. [7], Guskov et al.
[16] and Vallete and Prost [33] define multiresolution analysis on irregular
point sets.

Figure 4.5: Examples of regular, semi-regular and irregular triangle meshes. Fig-
ure reproduced from [7].

4.3 Multiresolution editing

In the context of multiresolution analysis editing the subdivision surface
at spatial location i on the mesh of resolution level j corresponds to the
editing of one particular wavelet function ψj

i . This is in contrast to the
transformations like spherical harmonics that can also represent surfaces
but due to their global support are unable to localize particular geometry
feature on the surface.

The figure 4.6 illustrates the effect of changing one particular scaling func-
tion φj

i at various resolution level. The overall shape of the scaling function
φj

i on resolution level j is simply the hat function centred on vertex i and
falling linearly along the incident faces. The fact that neighbouring ver-
tices at all subsequent levels of resolution are affected by a single scaling
function at the lower level suggests the possibility of exploiting the spatial
and frequency correlation of different parts of the surface. The butterfly
subdivision procedure is used for generating the subdivided surface.
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Figure 4.6: Multiresolution editing of single vertex at various resolutions. Note
how editing the vertex at low levels of resolution affects the position of neighbouring
vertices at all subsequent levels.



Chapter 5

Analysis in irregular setting

The complications with remeshing the original irregular surface into a semi-
regular one can be avoided if one chooses to use a multiresolution analysis
capable to operate on irregular meshes. One of the main advantages of such
approach is that exact reconstruction of original mesh is possible. It is also
one of the main drawbacks because non-uniform subdivision scheme can not
be used as a predictor in compression framework [16].

Because topological information (i.e. connectivity of vertices) of the mesh
can not be reconstructed by wavelet coefficients alone a framework for defin-
ing the coarser levels of resolution and encoding the decomposition is needed.
The coarser levels of resolution for irregular triangulations is easily obtained
by various mesh simplification algorithms that incrementally decimate the
finer mesh. For example, one can use simple edge, half-edge or vertex collapse
operations to obtain mesh with fewer faces, edges and vertices.

The decomposition encodings are also numerous to choose from. For exam-
ple, Bonneau used hierarchical Delaunay triangulation to encode the decom-
position in [4], while Roy et al. in [29] used Hoppe’s Progresive Mesh (PM)
framework [19].

Multiresolution analysis in irregular setting started when Bonneau intro-
duced concept of multiresolution analysis over non-nested spaces in [4]. In
this thesis we will describe more recent method of Roy et al. [29, 30] that is
inspired by the method of Guskov et al. [16].
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5.1 Mesh simplification

Mesh simplification 1 techniques consists of various algorithms that trans-
form a given polygonal mesh into another mesh that has fewer faces, edges
and vertices. First applications were in the field of computer graphics but
it soon became clear that they can also provide framework for doing a mul-
tiresolution analysis on irregular surface meshes. An excellent (although
little outdated) survey was written by Heckbert et al. [18].

For our purposes we will use a sequence of simple half-edge collapse oper-
ations to obtain the simplified mesh and modified Progresive Mesh (PM)
framework from Hoppe [19] to encode our decomposition.

Figure 5.1: Half-edge collapse and its inverse vertex split operation that are used
for simplification of original mesh. Figure reproduced from [5].

Figure 5.2: Progressive simplification of the subdivided sphere by the sequence of
half-edge collapses. Vertices that are not removed do not change positions so this
procedure effectively sub-samples the mesh.

1Mesh decimation is also widely used expression throughout the literature.



5.2 Geometric relaxation 21

5.2 Geometric relaxation

Relaxation operators are used to smooth the surface before each step of
decomposition. The differences between original and smoothed surface are
then stored and used as an equivalent of wavelet coefficients in irregular
setting. We use the curvature relaxation operator introduced by Roy et al.
in [29]. It is inspired by discrete differential-geometry operators described
by Meyer et al. in [25]. In contrast to some other discrete operators (e.g.
discrete Laplacian that replaces the vertex with the average of its 1-ring
neighbours) this operator smooths the geometry and does not affect the
triangle shapes much. The relaxed position of Rpi of vertex vi is given by:

Rpi =
∑

j∈V1(i)

wi,j with wi,j =
cotαi,j + cotαi,j∑

l∈V1(i)(cotαi,j + cotαi,j)
(5.1)

where V1(i) represents 1-ring neighbourhood of vertex vi. The weights wi,j

minimize the curvature energy of an edge ei where αi,j and αi,j are angles
opposite to the edge ei (see figure 5.3). Figure 5.4 shows the effect of several
curvature relaxations on molecular surface.

Figure 5.3: Angles used in calculation of curvature relaxation of vertex pi. Figure
reproduced from [29].

What is interesting in this approach is that using the same equation 5.1
we can relax not just position pi but any other vertex attribute fn(vi). In
fact, the position pi is defined as three distinct attributes each corresponding
to the x, y and z coordinate of vertex vi. In this way the multiresolution
analysis of surfaces is defined as a special case of multiresolution analysis of
functions defined on surfaces allowing us to easily extend the analysis to the
various surface properties described in chapter 2.
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Figure 5.4: Curvature relaxation of molecular surface. On the left is an original
surface with values of discrete mean curvature mapped onto each triangle. On the
right is the same surface with curvature relaxation operator applied several times.
Only the surface geometry is affected while triangle shapes are preserved. Areas
with high curvature are coloured red.

5.3 Decomposition

The decomposition decomposes original surface into a sequence of low reso-
lution approximations and a set of detail coefficients. We start from a finest
mesh M0 and compute the sequence of meshes Mk as well as set of differ-
ences (details) Dk between successive resolutions. Main steps in analysis
are:

Simplification: The simplification downsamples the initial mesh Mk by
removing some vertices, giving the approximation Mk+1 of the fine
mesh.

Subdivision: The Subdivision upsamples the initial mesh Mk+1 by in-
serting previously removed vertices, giving an estimation Sk of the
fine mesh.

Detail computation: The difference between the fine mesh Mk and the
subdivided mesh (estimation) Sk gives the detail coefficients Dk+1

associated with the mesh Mk+1. The details are computed for every
vertex of the fine mesh Mk.

Decomposition is based on incremental mesh simplification, so to obtain the
invertible decomposition procedure one needs simplification technique that
is also invertible. This is why we choose the half-edge collapse as a basic
operation for our simplification procedure. Its corresponding operation in
the reconstruction phase is vertex split operation where new vertex is added
to the triangulated mesh so as to have the same connectivity as before the
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removal. It is important to store the adjacency information for each vertex
that is removed, as well as the information on parent vertex (i.e. vertex into
which we collapse the edge).

Additionally, if one wishes to preserve the orientation of surface through-
out the reconstruction the information on parent’s left and right neighbour
vertices is also needed. The orientation is needed because we use dihedral
angles of retriangulated neighbourhoods as a simple guidance for the choice
of parent vertex for each vertex to be removed. Other measures can also be
used - for example, Roy et al. in [29] used Quadric Error Metric.

In addition to the above mentioned topological information that is needed
to reconstruct the topology of the mesh there is also the geometric informa-
tion that is used for the reconstruction of topology. It consists of already
mentioned relaxation weights wi,j that are stored for each edge on each level
of decomposition and the detail coefficients dk+1(vk

i ) that are defined as a
difference between the relaxed and the original vertices:

∀vk
i ∈Mk, dk+1

n (vk
i ) = fn(vk

i )−Rfn(vk
i ) (5.2)

5.4 Reconstruction

Using all the above information the original surface can finally be recon-
structed, level-by-level, with this formula:

fn(vk
i ) =

∑
j∈V1(i)

wk
i,jfn(vk+1

j ) + dk+1
n (vk

i ) with n ∈ [1, N ] (5.3)

New vertices (i.e. those that have been returned to the original mesh at
that particular level) need to be reconstructed first, with all other vertices
following.



Chapter 6

Results

The solvent-accesible surface of 2wfv protein obtained with Pymol was cho-
sen for testing the Matlab implementation of irregular multiresolution de-
composition and reconstruction. It contains 3654 vertices and 7304 faces
so decomposition and reconstruction are finished in a few minutes. This
is far too slow in comparison with the implementation of Roy et al. [29]
- their version runs in order of seconds even for very large meshes of over
more than 100000 vertices. The difference in speed is probably due to the
implementation in Matlab, rather than in some low-level language like C or
C++.

In the remain of this chapter the tests of decomposition and reconstruction
are described, as well as implementation of basic signal processing operations
on surfaces using irregular multiresolution analysis.

6.1 Decomposition of 2wfv protein surface

Figure 6.1 demonstrates the results of decomposition of protein surface into
iteratively coarser approximations. Colour is here to help visualize axis that
extends orthogonal to the view. Figure 6.2 shows the details coefficients
mapped onto the original surface. Individual bright spots correspond to the
vertices that are removed at that level. It can be observed that number of
removed vertices at each successive level is decreasing.
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Figure 6.1: 2wfv protein through various resolutions. From left to right resolutions
are 1, 4, 6 and 9.

Figure 6.2: Magnitude of details coefficients from various resolutions mapped onto
surface. From left to right resolutions are 1, 2, 4 and 10.

6.2 Signal processing on surface

Once the detail coefficients are obtained from multiresolution decomposi-
tion one can use them either to completely reconstruct the original mesh
or to perform some basic signal processing operations on it. For example,
because details from lower levels correspond to the higher level resolution,
low-pass filter can be approximated by simply setting all detail coefficients
below certain level to zero. Figure 6.3 demonstrates this by setting all detail
coefficients from levels below 1, 2, 5 and 10 to zero.

Figure 6.3: Effects of low-pass filter on surface of 2wfv protein. Low-pass filter
is implemented by simply setting all detail coefficients below certain level to zero
(low details levels correspond to higher resolutions). From left to right levels are 1,
2, 5 and 10.
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Analogously, the figure 6.4 demonstrates how the high-pass filter can be
approximated by setting all detail coefficients above certain level to zero (in
this case the levels above 1, 3, 6 and 10).

Figure 6.4: Effects of high-pass filter on surface of 2wfv protein. High-pass filter
is implemented by simply setting all detail coefficients above certain level to zero
(high details levels correspond to lower resolutions). From left to right levels are 1,
3, 6 and 10.



Chapter 7

Conclusion

One of the initial motivation for doing a research in the field of multiresolu-
tion analysis was one particular question: Is it possible to define geometric
complementarity measure for the surfaces in the wavelet domain and what
are the computational benefits of using such an approach? Inspiration came
from the similar method proposed by Ritchie and Kemp in [27, 28] that uses
the combination of spherical harmonics and radial basis functions to find
suitable set of solutions to the protein docking problem. The underlying
problem with using only the spherical harmonics, as noticed in before cited
articles, is that it is computationally difficult to manipulate a pair of sur-
faces that are defined in different coordinate systems, which is exactly the
problem with the wavelet representation as well. Ritchie and Kemp solve
the problem by defining the skin of the protein by adding a radial basis func-
tions that extend 2D surface into the 3D space, in that way setting common
reference frame for both surfaces and allowing the efficient computation of
surface complementarity.

Unfortunately, given the immense scope of research that was published in
the last few decades, there was not enough time to get acquainted with
the field and in the same time adequately tackle the problem of surface
complementarity in wavelet domain. First approach was to investigate the
methods of Lounsbery et al. [22, 23] and Schröder and Sweldens [31, 32].
Because their methods operate in semi-regular setting, the majority of time
was spent in finding the suitable remeshing procedure for the preparation of
input mesh to multiresolution analysis. Various approaches were considered:
original Eck et al. method [12] for parametrization to the base triangular
mesh, MAPS method by Lee et al. [21] that also finds parametrization to the
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base triangular weights but avoids expensive calculation of PL embedding
harmonic maps, shrink wrapping approach of of Kobbelt et al. [20], Laplace-
Beltrami operator approach by Angenent et al. [17] that parametrizes onto
a sphere by a conformal (angle-preserving) map. All of them were either
too complex for implementation or not well explained in the original articles
where only basic sketch of the procedures were given.

For that reason our research interest shifted toward multiresolution analysis
that are capable of operating in irregular setting. The approach of Guskov
et al. [16] was first considered but in the end choice fell on the method of
Roy et al. [29] because it was somewhat simpler to implement. In addition
to its applicability in the irregular setting, the method is also capable of
processing surfaces of arbitrary topological type and it trivially generalizes
to the processing of functions on the surface. Its multiresolution representa-
tion proved sufficient for simple signal processing operations on the original
surface such as low-pass and high-pass filtering.
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[25] M. Meyer, M. Desbrun, P. Schröder, and A. Barr. Discrete differential-
geometry operators for triangulated 2-manifolds. Proceedings of Visu-
alization and Mathematics, 2002.

[26] K. Polthier. Computational aspects of discrete minimal surfaces. Pro-
ceedings of the Clay Mathematics Institute 2001 Summer School, 2001.

[27] D.W. Ritchie. Parametric Protein Shape Recognition. Phd thesis, Uni-
versity of Aberdeen, 1998.

[28] D.W. Ritchie and G.J.L. Kemp. Fast computation, rotation, and com-
parison of low resolution spherical harmonic molecular surfaces. Journal
of Computational Chemistry, 1999.

[29] M. Roy, S. Foufou, A. Koschan, F. Truchetet, and Abidi M. Multireso-
lution analysis for irregular meshes. Proceedings of the SPIE Photonics
East, Wavelet Applications in Industrial Processing, 2003.

[30] M. Roy, S. Foufou, A. Koschan, F. Truchetet, and Abidi M. Multires-
olution analysis for meshes with appearance attributes. Proceedings
of the IEEE International Conference on Image Processing (ICIP’05),
2005.
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Summary

Matija Pǐskorec: Multiresolution analysis of macromolecular structures

Keywords: multiresolution, wavelets, subdivision, mesh, macromolecules,
surfaces

This thesis provides theoretical background on multiresolution analysis and
its application in the analysis of macromolecular structures with special em-
phasis on macromolecular surfaces that can be represented as triangular
meshes. Also, possibilities of multiresolution analysis of various physical
and chemical properties of those surfaces, and properties that are intrinsic
to surfaces themselves (i.e. curvature) are also explored in the context of
functions defined on surfaces. The difference between semi-regular and ir-
regular setting is explained, as well as the importance of subdivision surfaces
for the multiresolution analysis in semi-regular setting. Further emphasis is
put on multiresolution analysis in irregular setting. Program implementa-
tion of irregular subdivision is developed in order to perform simple signal
processing operations on triangulated meshes such as low-pass and high-pass
filtering.
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